Search results for: iterative dynamic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5247

Search results for: iterative dynamic algorithm

1617 Analysis of Physicochemical Properties on Prediction of R5, X4 and R5X4 HIV-1 Coreceptor Usage

Authors: Kai-Ti Hsu, Hui-Ling Huang, Chun-Wei Tung, Yi-Hsiung Chen, Shinn-Ying Ho

Abstract:

Bioinformatics methods for predicting the T cell coreceptor usage from the array of membrane protein of HIV-1 are investigated. In this study, we aim to propose an effective prediction method for dealing with the three-class classification problem of CXCR4 (X4), CCR5 (R5) and CCR5/CXCR4 (R5X4). We made efforts in investigating the coreceptor prediction problem as follows: 1) proposing a feature set of informative physicochemical properties which is cooperated with SVM to achieve high prediction test accuracy of 81.48%, compared with the existing method with accuracy of 70.00%; 2) establishing a large up-to-date data set by increasing the size from 159 to 1225 sequences to verify the proposed prediction method where the mean test accuracy is 88.59%, and 3) analyzing the set of 14 informative physicochemical properties to further understand the characteristics of HIV-1coreceptors.

Keywords: Coreceptor, genetic algorithm, HIV-1, SVM, physicochemical properties, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
1616 Using Multi-Objective Particle Swarm Optimization for Bi-objective Multi-Mode Resource-Constrained Project Scheduling Problem

Authors: Fatemeh Azimi, Razeeh Sadat Aboutalebi, Amir Abbas Najafi

Abstract:

In this paper the multi-mode resource-constrained project scheduling problem with discounted cash flows is considered. Minimizing the makespan and maximization the net present value (NPV) are the two common objectives that have been investigated in the literature. We apply one evolutionary algorithm named multiobjective particle swarm optimization (MOPSO) to find Pareto front solutions. We used standard sets of instances from the project scheduling problem library (PSPLIB). The results are computationally compared respect to different metrics taken from the literature on evolutionary multi-objective optimization.

Keywords: Evolutionary multi-objective optimization makespan, multi-mode, resource constraint, net present value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
1615 Paradigm and Paradox: Knowledge Management and Business Ethics

Authors: A. Evans, M. McKinley

Abstract:

Knowledge management (KM) is generally considered to be a positive process in an organisation, facilitating opportunities to achieve competitive advantage via better quality information handling, compilation of expert know-how and rapid response to fluctuations in the business environment. The KM paradigm as portrayed in the literature informs the processes that can increase intangible assets so that corporate knowledge is preserved. However, in some instances, knowledge management exists in a universe of dynamic tension among the conflicting needs to respect privacy and intellectual property (IP), to guard against data theft, to protect national security and to stay within the laws. While the Knowledge Management literature focuses on the bright side of the paradigm, there is also a different side in which knowledge is distorted, suppressed or misappropriated due to personal or organisational motives (the paradox). This paper describes the ethical paradoxes that occur within the taxonomy and deontology of knowledge management and suggests that recognising both the promises and pitfalls of KM requires wisdom.

Keywords: business ethics, data, knowledge, knowledgemanagement, privacy, protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
1614 Grid-based Supervised Clustering - GBSC

Authors: Pornpimol Bungkomkhun, Surapong Auwatanamongkol

Abstract:

This paper presents a supervised clustering algorithm, namely Grid-Based Supervised Clustering (GBSC), which is able to identify clusters of any shapes and sizes without presuming any canonical form for data distribution. The GBSC needs no prespecified number of clusters, is insensitive to the order of the input data objects, and is capable of handling outliers. Built on the combination of grid-based clustering and density-based clustering, under the assistance of the downward closure property of density used in bottom-up subspace clustering, the GBSC can notably reduce its search space to avoid the memory confinement situation during its execution. On two-dimension synthetic datasets, the GBSC can identify clusters with different shapes and sizes correctly. The GBSC also outperforms other five supervised clustering algorithms when the experiments are performed on some UCI datasets.

Keywords: supervised clustering, grid-based clustering, subspace clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
1613 Particle Simulation of Rarefied Gas Flows witha Superimposed Wall Surface Temperature Gradient in Microgeometries

Authors: V. Azadeh Ranjbar

Abstract:

Rarefied gas flows are often occurred in micro electro mechanical systems and classical CFD could not precisely anticipate the flow and thermal behavior due to the high Knudsen number. Therefore, the heat transfer and the fluid dynamics characteristics of rarefied gas flows in both a two-dimensional simple microchannel and geometry similar to single Knudsen compressor have been investigated with a goal of increasing performance of a actual Knudsen compressor by using a particle simulation method. Thermal transpiration and thermal creep, which are rarefied gas dynamic phenomena, that cause movement of the flow from less to higher temperature is generated by using two different longitude temperature gradients (Linear, Step) along the walls of the flow microchannel. In this study the influence of amount of temperature gradient and governing pressure in various Knudsen numbers and length-to-height ratios have been examined.

Keywords: DSMC, Thermal transpiration, Thermal creep, MEMS, Knudsen Compressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
1612 Impairments Correction of Six-Port Based Millimeter-Wave Radar

Authors: Dan Ohev Zion, Alon Cohen

Abstract:

In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype.

Keywords: Radar, millimeter-wave, six-port, FMCW Radar, IQ mismatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 491
1611 Application and Limitation of Parallel Modelingin Multidimensional Sequential Pattern

Authors: Mahdi Esmaeili, Mansour Tarafdar

Abstract:

The goal of data mining algorithms is to discover useful information embedded in large databases. One of the most important data mining problems is discovery of frequently occurring patterns in sequential data. In a multidimensional sequence each event depends on more than one dimension. The search space is quite large and the serial algorithms are not scalable for very large datasets. To address this, it is necessary to study scalable parallel implementations of sequence mining algorithms. In this paper, we present a model for multidimensional sequence and describe a parallel algorithm based on data parallelism. Simulation experiments show good load balancing and scalable and acceptable speedup over different processors and problem sizes and demonstrate that our approach can works efficiently in a real parallel computing environment.

Keywords: Sequential Patterns, Data Mining, ParallelAlgorithm, Multidimensional Sequence Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
1610 Visual Hull with Imprecise Input

Authors: Peng He

Abstract:

Imprecision is a long-standing problem in CAD design and high accuracy image-based reconstruction applications. The visual hull which is the closed silhouette equivalent shape of the objects of interest is an important concept in image-based reconstruction. We extend the domain-theoretic framework, which is a robust and imprecision capturing geometric model, to analyze the imprecision in the output shape when the input vertices are given with imprecision. Under this framework, we show an efficient algorithm to generate the 2D partial visual hull which represents the exact information of the visual hull with only basic imprecision assumptions. We also show how the visual hull from polyhedra problem can be efficiently solved in the context of imprecise input.

Keywords: Geometric Domain, Computer Vision, Computational Geometry, Visual Hull, Image-Based reconstruction, Imprecise Input, CAD object

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
1609 Blind Source Separation Using Modified Gaussian FastICA

Authors: V. K. Ananthashayana, Jyothirmayi M.

Abstract:

This paper addresses the problem of source separation in images. We propose a FastICA algorithm employing a modified Gaussian contrast function for the Blind Source Separation. Experimental result shows that the proposed Modified Gaussian FastICA is effectively used for Blind Source Separation to obtain better quality images. In this paper, a comparative study has been made with other popular existing algorithms. The peak signal to noise ratio (PSNR) and improved signal to noise ratio (ISNR) are used as metrics for evaluating the quality of images. The ICA metric Amari error is also used to measure the quality of separation.

Keywords: Amari error, Blind Source Separation, Contrast function, Gaussian function, Independent Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
1608 Compensation of Power Quality Disturbances Using DVR

Authors: R. Rezaeipour

Abstract:

One of the key aspects of power quality improvement in power system is the mitigation of voltage sags/swells and flicker. Custom power devices have been known as the best tools for voltage disturbances mitigation as well as reactive power compensation. Dynamic Voltage Restorer (DVR) which is the most efficient and effective modern custom power device can provide the most commercial solution to solve several problems of power quality in distribution networks. This paper deals with analysis and simulation technique of DVR based on instantaneous power theory which is a quick control to detect signals. The main purpose of this work is to remove three important disturbances including voltage sags/swells and flicker. Simulation of the proposed method was carried out on two sample systems by using Matlab software environment and the results of simulation show that the proposed method is able to provide desirable power quality in the presence of wide range of disturbances.

Keywords: DVR, Power quality, Voltage sags, Voltage swells, Flicker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
1607 Computing a Time Based Effective Radius-of-Curvature for Roadways

Authors: Gary D. Cantrell, E. Alex Baylot

Abstract:

The radius-of-curvature (ROC) defines the degree of curvature along the centerline of a roadway whereby a travelling vehicle must follow. Roadway designs must encompass ROC in mitigating the cost of earthwork associated with construction while also allowing vehicles to travel at maximum allowable design speeds. Thus, a road will tend to follow natural topography where possible, but curvature must also be optimized to permit fast, but safe vehicle speeds. The more severe the curvature of the road, the slower the permissible vehicle speed. For route planning, whether for urban settings, emergency operations, or even parcel delivery, ROC is a necessary attribute of road arcs for computing travel time. It is extremely rare for a geo-spatial database to contain ROC. This paper will present a procedure and mathematical algorithm to calculate and assign ROC to a segment pair and/or polyline.

Keywords: linear features, radius-of-curvature, roads, routing, traffic, turning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
1606 The Frequency Graph for the Traveling Salesman Problem

Authors: Y. Wang

Abstract:

Traveling salesman problem (TSP) is hard to resolve when the number of cities and routes become large. The frequency graph is constructed to tackle the problem. A frequency graph maintains the topological relationships of the original weighted graph. The numbers on the edges are the frequencies of the edges emulated from the local optimal Hamiltonian paths. The simplest kind of local optimal Hamiltonian paths are computed based on the four vertices and three lines inequality. The search algorithm is given to find the optimal Hamiltonian circuit based on the frequency graph. The experiments show that the method can find the optimal Hamiltonian circuit within several trials.

Keywords: Traveling salesman problem, frequency graph, local optimal Hamiltonian path, four vertices and three lines inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
1605 Particle Filter Applied to Noisy Synchronization in Polynomial Chaotic Maps

Authors: Moussa Yahia, Pascal Acco, Malek Benslama

Abstract:

Polynomial maps offer analytical properties used to obtain better performances in the scope of chaos synchronization under noisy channels. This paper presents a new method to simplify equations of the Exact Polynomial Kalman Filter (ExPKF) given in [1]. This faster algorithm is compared to other estimators showing that performances of all considered observers vanish rapidly with the channel noise making application of chaos synchronization intractable. Simulation of ExPKF shows that saturation drawn on the emitter to keep it stable impacts badly performances for low channel noise. Then we propose a particle filter that outperforms all other Kalman structured observers in the case of noisy channels.

Keywords: Chaos synchronization, Saturation, Fast ExPKF, Particlefilter, Polynomial maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
1604 Improving Cache Memory Utilization

Authors: Sami I. Serhan, Hamed M. Abdel-Haq

Abstract:

In this paper, an efficient technique is proposed to manage the cache memory. The proposed technique introduces some modifications on the well-known set associative mapping technique. This modification requires a little alteration in the structure of the cache memory and on the way by which it can be referenced. The proposed alteration leads to increase the set size virtually and consequently to improve the performance and the utilization of the cache memory. The current mapping techniques have accomplished good results. In fact, there are still different cases in which cache memory lines are left empty and not used, whereas two or more processes overwrite the lines of each other, instead of using those empty lines. The proposed algorithm aims at finding an efficient way to deal with such problem.

Keywords: Modified Set Associative Mapping, Locality of Reference, Miss Ratio, Hit Ratio, Cache Memory, Clustered Behavior, Index Address, Tag Field, Status Field, and Complement of Index Address.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
1603 Optimal Control of Viscoelastic Melt Spinning Processes

Authors: Shyam S.N. Perera

Abstract:

The optimal control problem for the viscoelastic melt spinning process has not been reported yet in the literature. In this study, an optimal control problem for a mathematical model of a viscoelastic melt spinning process is considered. Maxwell-Oldroyd model is used to describe the rheology of the polymeric material, the fiber is made of. The extrusion velocity of the polymer at the spinneret as well as the velocity and the temperature of the quench air and the fiber length serve as control variables. A constrained optimization problem is derived and the first–order optimality system is set up to obtain the adjoint equations. Numerical solutions are carried out using a steepest descent algorithm. A computer program in MATLAB is developed for simulations.

Keywords: Fiber spinning, Maxwell-Oldroyd, Optimal control, First-order optimality system, Adjoint system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
1602 Finding Viable Pollution Routes in an Urban Network under a Predefined Cost

Authors: Dimitra Alexiou, Stefanos Katsavounis, Ria Kalfakakou

Abstract:

In an urban area the determination of transportation routes should be planned so as to minimize the provoked pollution taking into account the cost of such routes. In the sequel these routes are cited as pollution routes.

The transportation network is expressed by a weighted graph G=(V,E,D,P) where every vertex represents a location to be served and contains unordered pairs (edges) of elements in V that indicate a simple road. The distances / cost and a weight that depict the provoked air pollution by a vehicle transition at every road are assigned to each road as well. These are the items of set D andrespectively.

Furthermore the investigated pollution routes must not exceed predefined corresponding values concerning the route cost and the route pollution level during the vehicle transition.

In this paper we present an algorithm that generates such routes in order that the decision maker selects the most appropriate one. 

Keywords: bi-criteria, pollution, shortest paths.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
1601 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study

Authors: Faisal Aburub, Wael Hadi

Abstract:

Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.

Keywords: Classification, data mining, evaluation measures, groundwater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
1600 ML Detection with Symbol Estimation for Nonlinear Distortion of OFDM Signal

Authors: Somkiat Lerkvaranyu, Yoshikazu Miyanaga

Abstract:

In this paper, a new technique of signal detection has been proposed for detecting the orthogonal frequency-division multiplexing (OFDM) signal in the presence of nonlinear distortion.There are several advantages of OFDM communications system.However, one of the existing problems is remain considered as the nonlinear distortion generated by high-power-amplifier at the transmitter end due to the large dynamic range of an OFDM signal. The proposed method is the maximum likelihood detection with the symbol estimation. When the training data are available, the neural network has been used to learn the characteristic of received signal and to estimate the new positions of the transmitted symbol which are provided to the maximum likelihood detector. Resulting in the system performance, the nonlinear distortions of a traveling wave tube amplifier with OFDM signal are considered in this paper.Simulation results of the bit-error-rate performance are obtained with 16-QAM OFDM systems.

Keywords: OFDM, TWTA, nonlinear distortion, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
1599 A Recommender System Fusing Collaborative Filtering and User’s Review Mining

Authors: Seulbi Choi, Hyunchul Ahn

Abstract:

Collaborative filtering (CF) algorithm has been popularly used for recommender systems in both academic and practical applications. It basically generates recommendation results using users’ numeric ratings. However, the additional use of the information other than user ratings may lead to better accuracy of CF. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's review can be regarded as the new informative source for identifying user's preference with accuracy. Under this background, this study presents a hybrid recommender system that fuses CF and user's review mining. Our system adopts conventional memory-based CF, but it is designed to use both user’s numeric ratings and his/her text reviews on the items when calculating similarities between users.

Keywords: Recommender system, collaborative filtering, text mining, review mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
1598 Linear Stability Characteristics of Wake-Shear Layers in Two-Phase Shallow Flows

Authors: Inta Volodko, Valentina Koliskina

Abstract:

Linear stability of wake-shear layers in two-phase shallow flows is analyzed in the present paper. Stability analysis is based on two-dimensional shallow water equations. It is assumed that the fluid contains uniformly distributed solid particles. No dynamic interaction between the carrier fluid and particles is expected in the initial moment. Linear stability curves are obtained for different values of the particle loading parameter, the velocity ratio and the velocity deficit. It is shown that the increase in the velocity ratio destabilizes the flow. The particle loading parameter has a stabilizing effect on the flow. The role of the velocity deficit is also destabilizing: the increase of the velocity deficit leads to less stable flow.

Keywords: Linear stability, Shallow flows, Wake-shear flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
1597 Tuning of Thermal FEA Using Krylov Parametric MOR for Subsea Application

Authors: A. Suleng, T. Jelstad Olsen, J. Šindler, P. Bárta

Abstract:

A dead leg is a typical subsea production system component. CFD is required to model heat transfer within the dead leg. Unfortunately its solution is time demanding and thus not suitable for fast prediction or repeated simulations. Therefore there is a need to create a thermal FEA model, mimicking the heat flows and temperatures seen in CFD cool down simulations. This paper describes the conventional way of tuning and a new automated way using parametric model order reduction (PMOR) together with an optimization algorithm. The tuned FE analyses replicate the steady state CFD parameters within a maximum error in heat flow of 6 % and 3 % using manual and PMOR method respectively. During cool down, the relative error of the tuned FEA models with respect to temperature is below 5% comparing to the CFD. In addition, the PMOR method obtained the correct FEA setup five times faster than the manually tuned FEA.

Keywords: CFD, convective heat, FEA, model tuning, subseaproduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
1596 An Amalgam Approach for DICOM Image Classification and Recognition

Authors: J. Umamaheswari, G. Radhamani

Abstract:

This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.

Keywords: Recognition, classification, Relaxed Median Filter, Adaptive thresholding, clustering and Neural Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
1595 Development of Variable Stepsize Variable Order Block Method in Divided Difference Form for the Numerical Solution of Delay Differential Equations

Authors: Fuziyah Ishak, Mohamed B. Suleiman, Zanariah A. Majid, Khairil I. Othman

Abstract:

This paper considers the development of a two-point predictor-corrector block method for solving delay differential equations. The formulae are represented in divided difference form and the algorithm is implemented in variable stepsize variable order technique. The block method produces two new values at a single integration step. Numerical results are compared with existing methods and it is evident that the block method performs very well. Stability regions of the block method are also investigated.

Keywords: block method, delay differential equations, predictor-corrector, stability region, variable stepsize variable order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
1594 Modeling of Bio Scaffolds: Structural and Fluid Transport Characterization

Authors: Sahba Sadir, M. R. A. Kadir, A. Öchsner, M. N. Harun

Abstract:

Scaffolds play a key role in tissue engineering and can be produced in many different ways depending on the applications and the materials used. Most researchers used an experimental trialand- error approach into new biomaterials but computer simulation applied to tissue engineering can offer a more exhaustive approach to test and screen out biomaterials. This paper develops the model of scaffolds and Computational Fluid Dynamics that show the value of computer simulations in determining the influence of the geometrical scaffold parameter porosity, pore size and shape on the permeability of scaffolds, magnitude of velocity, drop pressure, shear stress distribution and level and the proper design of the geometry of the scaffold. This creates a need for more advanced studies that include aspects of dynamic conditions of a micro fluid passing through the scaffold were characterized for tissue engineering applications and differentiation of tissues within scaffolds.

Keywords: Scaffold engineering, Tissue engineering, Cellularstructure, Biomaterial, Computational fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
1593 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.

Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6634
1592 Addressing Security Concerns of Data Exchange in AODV Protocol

Authors: Monis Akhlaq, M Noman Jafri, Muzammil A Khan, Baber Aslam

Abstract:

The Ad Hoc on demand distance vector (AODV) routing protocol is designed for mobile ad hoc networks (MANETs). AODV offers quick adaptation to dynamic link conditions; it is characterized by low memory overhead and low network utilization. The security issues related to the protocol remain challenging for the wireless network designers. Numerous schemes have been proposed for establishing secure communication between end users, these schemes identify that the secure operation of AODV is a bi tier task (routing and secure exchange of information at separate levels). Our endeavor in this paper would focus on achieving the routing and secure data exchange in a single step. This will facilitate the user nodes to perform routing, mutual authentications, generation and secure exchange of session key in one step thus ensuring confidentiality, integrity and authentication of data exchange in a more suitable way.

Keywords: AODV, key management, security, wirelessnetworks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
1591 Multi-Font Farsi/Arabic Isolated Character Recognition Using Chain Codes

Authors: H. Izakian, S. A. Monadjemi, B. Tork Ladani, K. Zamanifar

Abstract:

Nowadays, OCR systems have got several applications and are increasingly employed in daily life. Much research has been done regarding the identification of Latin, Japanese, and Chinese characters. However, very little investigation has been performed regarding Farsi/Arabic characters recognition. Probably the reason is difficulty and complexity of those characters identification compared to the others and limitation of IT activities in Farsi and Arabic speaking countries. In this paper, a technique has been employed to identify isolated Farsi/Arabic characters. A chain code based algorithm along with other significant peculiarities such as number and location of dots and auxiliary parts, and the number of holes existing in the isolated character has been used in this study to identify Farsi/Arabic characters. Experimental results show the relatively high accuracy of the method developed when it is tested on several standard Farsi fonts.

Keywords: Farsi characters, OCR, feature extraction, chain code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2393
1590 A Molding Surface Auto-Inspection System

Authors: Ssu-Han Chen, Der-Baau Perng

Abstract:

Molding process in IC manufacturing secures chips against the harms done by hot, moisture or other external forces. While a chip was being molded,defects like cracks, dilapidation, or voids may be embedding on the molding surface. The molding surfaces the study poises to treat and the ones on the market, though, differ in the surface where texture similar to defects is everywhere. Manual inspection usually passes over low-contrast cracks or voids; hence an automatic optical inspection system for molding surface is necessary. The proposed system is consisted of a CCD, a coaxial light, a back light as well as a motion control unit. Based on the property of statistical textures of the molding surface, a series of digital image processing and classification procedure is carried out. After training of the parameter associated with above algorithm, result of the experiment suggests that the accuracy rate is up to 93.75%, contributing to the inspection quality of IC molding surface.

Keywords: Molding surface, machine vision, statistical texture, discrete Fourier transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
1589 Periodic Control of a Reverse Osmosis Water Desalination Unit

Authors: Ali Emad

Abstract:

Enhancement of the performance of a reverse osmosis (RO) unit through periodic control is studied. The periodic control manipulates the feed pressure and flow rate of the RO unit. To ensure the periodic behavior of the inputs, the manipulated variables (MV) are transformed into the form of sinusoidal functions. In this case, the amplitude and period of the sinusoidal functions become the surrogate MV and are thus regulated via nonlinear model predictive control algorithm. The simulation results indicated that the control system can generate cyclic inputs necessary to enhance the closedloop performance in the sense of increasing the permeate production and lowering the salt concentration. The proposed control system can attain its objective with arbitrary set point for the controlled outputs. Successful results were also obtained in the presence of modeling errors.

Keywords: Reverse osmosis, water desalination, periodic control, model predictive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
1588 A Sociocybernetics Data Analysis Using Causality in Tourism Networks

Authors: M. Lloret-Climent, J. Nescolarde-Selva

Abstract:

The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.

Keywords: Attractor, invariant set, orbits, tourist variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745