Search results for: shape detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2269

Search results for: shape detection

1939 Efficiency of Different GLR Test-statistics for Spatial Signal Detection

Authors: Olesya Bolkhovskaya, Alexander Maltsev

Abstract:

In this work the characteristics of spatial signal detec¬tion from an antenna array in various sample cases are investigated. Cases for a various number of available prior information about the received signal and the background noise are considered. The spatial difference between a signal and noise is only used. The performance characteristics and detecting curves are presented. All test-statistics are obtained on the basis of the generalized likelihood ratio (GLR). The received results are correct for a short and long sample.

Keywords: GLR test-statistic, detection task, generalized likelihood ratio, antenna array, detection curves, performance characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
1938 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation

Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov

Abstract:

Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).

Keywords: Cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
1937 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2776
1936 Line Heating Forming: Methodology and Application Using Kriging and Fifth Order Spline Formulations

Authors: Henri Champliaud, Zhengkun Feng, Ngan Van Lê, Javad Gholipour

Abstract:

In this article, a method is presented to effectively estimate the deformed shape of a thick plate due to line heating. The method uses a fifth order spline interpolation, with up to C3 continuity at specific points to compute the shape of the deformed geometry. First and second order derivatives over a surface are the resulting parameters of a given heating line on a plate. These parameters are determined through experiments and/or finite element simulations. Very accurate kriging models are fitted to real or virtual surfaces to build-up a database of maps. Maps of first and second order derivatives are then applied on numerical plate models to evaluate their evolving shapes through a sequence of heating lines. Adding an optimization process to this approach would allow determining the trajectories of heating lines needed to shape complex geometries, such as Francis turbine blades.

Keywords: Deformation, kriging, fifth order spline interpolation, first, second and third order derivatives, C3 continuity, line heating, plate forming, thermal forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
1935 3D Numerical Studies on Jets Acoustic Characteristics of Chevron Nozzles for Aerospace Applications

Authors: R. Kanmaniraja, R. Freshipali, J. Abdullah, K. Niranjan, K. Balasubramani, V. R. Sanal Kumar

Abstract:

The present environmental issues have made aircraft jet noise reduction a crucial problem in aero-acoustics research. Acoustic studies reveal that addition of chevrons to the nozzle reduces the sound pressure level reasonably with acceptable reduction in performance. In this paper comprehensive numerical studies on acoustic characteristics of different types of chevron nozzles have been carried out with non-reacting flows for the shape optimization of chevrons in supersonic nozzles for aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, k-ε turbulence model. In this paper chevron with sharp edge, flat edge, round edge and U-type edge are selected for the jet acoustic characterization of supersonic nozzles. We observed that compared to the base model a case with round-shaped chevron nozzle could reduce 4.13% acoustic level with 0.6% thrust loss. We concluded that the prudent selection of the chevron shape will enable an appreciable reduction of the aircraft jet noise without compromising its overall performance. It is evident from the present numerical simulations that k-ε model can predict reasonably well the acoustic level of chevron supersonic nozzles for its shape optimization.

Keywords: Supersonic nozzle, Chevron, Acoustic level, Shape Optimization of Chevron Nozzles, Jet noise suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3821
1934 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.

Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500
1933 Simulation of Roughness Shape and Distribution Effects on Rarefied and Compressible Flows at Slip Flow Regime

Authors: M. Hakak Khadem, S. Hossainpour, M. Shams

Abstract:

A numerical simulation of micro Poiseuille flow has performed for rarefied and compressible flow at slip flow regimes. The wall roughness is simulated in two cases with triangular microelements and random micro peaks distributed on wall surfaces to study the effects of roughness shape and distribution on flow field. Two values of Mach and Knudsen numbers have used to investigate the effects of rarefaction as well as compressibility. The numerical results have also checked with available theoretical and experimental relations and good agreements has achieved. High influence of roughness shape can be seen for both compressible and incompressible rarefied flows. In addition it is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases.

Keywords: Relative roughness, slip flow, Poiseuille number, roughness distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
1932 Control of Thermal Flow in Machine Tools Using Shape Memory Alloys

Authors: Reimund Neugebauer, Welf-Guntram Drossel, Andre Bucht, Christoph Ohsenbrügge

Abstract:

In this paper the authors propose and verify an approach to control heat flow in machine tool components. Thermal deformations are a main aspect that affects the accuracy of machining. Due to goals of energy efficiency, thermal basic loads should be reduced. This leads to inhomogeneous and time variant temperature profiles. To counteract these negative consequences, material with high melting enthalpy is used as a method for thermal stabilization. The increased thermal capacity slows down the transient thermal behavior. To account for the delayed thermal equilibrium, a control mechanism for thermal flow is introduced. By varying a gap in a heat flow path the thermal resistance of an assembly can be controlled. This mechanism is evaluated in two experimental setups. First to validate the ability to control the thermal resistance and second to prove the possibility of a self-sufficient option based on the selfsensing abilities of thermal shape memory alloys.

Keywords: energy-efficiency, heat transfer path, MT thermal stability, thermal shape memory alloy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
1931 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map

Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo

Abstract:

Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.

Keywords: RDM, multi-source data, big data, U-City.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
1930 Development of an Infrared Thermography Method with CO2 Laser Excitation, Applied to Defect Detection in CFRP

Authors: Sam-Ang Keo, Franck Brachelet, Florin Breaban, Didier Defer

Abstract:

This paper presents a NDT by infrared thermography with excitation CO2 Laser, wavelength of 10.6 μm. This excitation is the controllable heating beam, confirmed by a preliminary test on a wooden plate 1.2 m x 0.9 m x 1 cm. As the first practice, this method is applied to detecting the defect in CFRP heated by the Laser 300 W during 40 s. Two samples 40 cm x 40 cm x 4.5 cm are prepared, one with defect, another one without defect. The laser beam passes through the lens of a deviation device, and heats the samples placed at a determinate position and area. As a result, the absence of adhesive can be detected. This method displays prominently its application as NDT with the composite materials. This work gives a good perspective to characterize the laser beam, which is very useful for the next detection campaigns.

Keywords: CO2 LASER, Infrared Thermography, NDT, CFRP, Defect Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3007
1929 Automatic Extraction of Arbitrarily Shaped Buildings from VHR Satellite Imagery

Authors: Evans Belly, Imdad Rizvi, M. M. Kadam

Abstract:

Satellite imagery is one of the emerging technologies which are extensively utilized in various applications such as detection/extraction of man-made structures, monitoring of sensitive areas, creating graphic maps etc. The main approach here is the automated detection of buildings from very high resolution (VHR) optical satellite images. Initially, the shadow, the building and the non-building regions (roads, vegetation etc.) are investigated wherein building extraction is mainly focused. Once all the landscape is collected a trimming process is done so as to eliminate the landscapes that may occur due to non-building objects. Finally the label method is used to extract the building regions. The label method may be altered for efficient building extraction. The images used for the analysis are the ones which are extracted from the sensors having resolution less than 1 meter (VHR). This method provides an efficient way to produce good results. The additional overhead of mid processing is eliminated without compromising the quality of the output to ease the processing steps required and time consumed.

Keywords: Building detection, shadow detection, landscape generation, label, partitioning, very high resolution satellite imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
1928 Comparative Analysis of Various Multiuser Detection Techniques in SDMA-OFDM System Over the Correlated MIMO Channel Model for IEEE 802.16n

Authors: Susmita Das, Kala Praveen Bagadi

Abstract:

SDMA (Space-Division Multiple Access) is a MIMO (Multiple-Input and Multiple-Output) based wireless communication network architecture which has the potential to significantly increase the spectral efficiency and the system performance. The maximum likelihood (ML) detection provides the optimal performance, but its complexity increases exponentially with the constellation size of modulation and number of users. The QR decomposition (QRD) MUD can be a substitute to ML detection due its low complexity and near optimal performance. The minimum mean-squared-error (MMSE) multiuser detection (MUD) minimises the mean square error (MSE), which may not give guarantee that the BER of the system is also minimum. But the minimum bit error rate (MBER) MUD performs better than the classic MMSE MUD in term of minimum probability of error by directly minimising the BER cost function. Also the MBER MUD is able to support more users than the number of receiving antennas, whereas the rest of MUDs fail in this scenario. In this paper the performance of various MUD techniques is verified for the correlated MIMO channel models based on IEEE 802.16n standard.

Keywords: Multiple input multiple output, multiuser detection, orthogonal frequency division multiplexing, space division multiple access, Bit error rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
1927 Roundness Deviation Measuring Strategy at Coordination Measuring Machines and Conventional Machines

Authors: Lenka Ocenasova, Bartosz Gapinski, Robert Cep, Linda Gregova, Branimir Barisic, Jana Novakova, Lenka Petrkovska

Abstract:

Today technological process makes possible surface control of producing parts which is needful for product quality guarantee. Geometrical structure of part surface includes form, proportion, accuracy to shape, accuracy to size, alignment and surface topography (roughness, waviness, etc.). All these parameters are dependence at technology, production machine parameters, material properties, but also at human, etc. Every parameters approves at total part accuracy, it is means at accuracy to shape. One of the most important accuracy to shape element is roundness. This paper will be deals by comparison of roughness deviations at coordination measuring machines and at special single purpose machines. Will describing measuring by discreet method (discontinuous) and scanning method (continuous) at coordination measuring machines and confrontation with reference method using at single purpose machines.

Keywords: Coordinating Measuring Machines (CMM), Measuring Strategy, Roughness Deviation, Accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
1926 Tagged Grid Matching Based Object Detection in Wavelet Neural Network

Authors: R. Arulmurugan, P. Sengottuvelan

Abstract:

Object detection using Wavelet Neural Network (WNN) plays a major contribution in the analysis of image processing. Existing cluster-based algorithm for co-saliency object detection performs the work on the multiple images. The co-saliency detection results are not desirable to handle the multi scale image objects in WNN. Existing Super Resolution (SR) scheme for landmark images identifies the corresponding regions in the images and reduces the mismatching rate. But the Structure-aware matching criterion is not paying attention to detect multiple regions in SR images and fail to enhance the result percentage of object detection. To detect the objects in the high-resolution remote sensing images, Tagged Grid Matching (TGM) technique is proposed in this paper. TGM technique consists of the three main components such as object determination, object searching and object verification in WNN. Initially, object determination in TGM technique specifies the position and size of objects in the current image. The specification of the position and size using the hierarchical grid easily determines the multiple objects. Second component, object searching in TGM technique is carried out using the cross-point searching. The cross out searching point of the objects is selected to faster the searching process and reduces the detection time. Final component performs the object verification process in TGM technique for identifying (i.e.,) detecting the dissimilarity of objects in the current frame. The verification process matches the search result grid points with the stored grid points to easily detect the objects using the Gabor wavelet Transform. The implementation of TGM technique offers a significant improvement on the multi-object detection rate, processing time, precision factor and detection accuracy level.

Keywords: Object Detection, Cross-point Searching, Wavelet Neural Network, Object Determination, Gabor Wavelet Transform, Tagged Grid Matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
1925 Reversible Medical Image Watermarking For Tamper Detection And Recovery With Run Length Encoding Compression

Authors: Siau-Chuin Liew, Siau-Way Liew, Jasni Mohd Zain

Abstract:

Digital watermarking in medical images can ensure the authenticity and integrity of the image. This design paper reviews some existing watermarking schemes and proposes a reversible tamper detection and recovery watermarking scheme. Watermark data from ROI (Region Of Interest) are stored in RONI (Region Of Non Interest). The embedded watermark allows tampering detection and tampered image recovery. The watermark is also reversible and data compression technique was used to allow higher embedding capacity.

Keywords: data compression, medical image, reversible, tamperdetection and recovery, watermark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
1924 Face Localization Using Illumination-dependent Face Model for Visual Speech Recognition

Authors: Robert E. Hursig, Jane X. Zhang

Abstract:

A robust still image face localization algorithm capable of operating in an unconstrained visual environment is proposed. First, construction of a robust skin classifier within a shifted HSV color space is described. Then various filtering operations are performed to better isolate face candidates and mitigate the effect of substantial non-skin regions. Finally, a novel Bhattacharyya-based face detection algorithm is used to compare candidate regions of interest with a unique illumination-dependent face model probability distribution function approximation. Experimental results show a 90% face detection success rate despite the demands of the visually noisy environment.

Keywords: Audio-visual speech recognition, Bhattacharyyacoefficient, face detection,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
1923 A Study on Neural Network Training Algorithm for Multiface Detection in Static Images

Authors: Zulhadi Zakaria, Nor Ashidi Mat Isa, Shahrel A. Suandi

Abstract:

This paper reports the study results on neural network training algorithm of numerical optimization techniques multiface detection in static images. The training algorithms involved are scale gradient conjugate backpropagation, conjugate gradient backpropagation with Polak-Riebre updates, conjugate gradient backpropagation with Fletcher-Reeves updates, one secant backpropagation and resilent backpropagation. The final result of each training algorithms for multiface detection application will also be discussed and compared.

Keywords: training algorithm, multiface, static image, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571
1922 Detecting Circles in Image Using Statistical Image Analysis

Authors: Fathi M. O. Hamed, Salma F. Elkofhaifee

Abstract:

The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data.

Keywords: Image processing, median filter, projection, scalespace, segmentation, threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
1921 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX through Fusion of Vision and 3+1D Millimeter Wave Radar

Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma

Abstract:

Unmanned Surface Vehicles (USVs) hold significant value for their capacity to undertake hazardous and labor-intensive operations over aquatic environments. Object detection tasks are significant in these applications. Nonetheless, the efficacy of USVs in object detection is impeded by several intrinsic challenges, including the intricate dispersal of obstacles, reflections emanating from coastal structures, and the presence of fog over water surfaces, among others. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. The MMW radar is a complementary tool to vision sensors, offering reliable environmental data. This approach involves the conversion of the radar’s 3D point cloud into a 2D radar pseudo-image, thereby standardizing the format for radar and vision data by leveraging a point transformer. Furthermore, this paper proposes the development of a multi-source object detection network, named RV-YOLOX, which leverages radar-vision integration specifically tailored for inland waterway environments. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.

Keywords: Inland waterways, object detection, YOLO, sensor fusion, self-attention, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 292
1920 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragoş Gavriluţ, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through (semi)-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: Detection Rate, False Positives, Perceptron, One Side Class, Ensembles, Decision Tree, Hybrid methods, Feature Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3280
1919 Ultra High Speed Approach for Document Skew Detection and Correction Based On Centre of Gravity

Authors: Seyyed Yasser Hashemi

Abstract:

Skew detection and correction (SDC) has a direct effect in efficiency and exactitude of documents’ segmentation and analysis and thus is considered as a very important step in documents’ analysis field. Skew is a major problem in documents’ analysis for every language. For Arabic/Persian document scripts this problem is more severe because of special features of these languages. In this paper an efficient and fast algorithm for Document Skew Detection (DSD) based on the concept of segmentation and Center of Gravity (COG) is proposed. This algorithm is examined for 150 Arabic/Persian and English documents and SDC process are done successfully for 93 percent of documents with error rate of less than 1°. This algorithm shows better results for English documents compared to Arabic/Persian documents. The proposed method is also represents favorable results for handwritten, printed and also complicated documents such as newspapers and journals even with very low quality and resolution.

Keywords: Arabic/Persian document, Baseline, Centre of gravity, Document segmentation, Skew detection and correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
1918 A Fast Silhouette Detection Algorithm for Shadow Volumes in Augmented Reality

Authors: Hoshang Kolivand, Mahyar Kolivand, Mohd Shahrizal Sunar, Mohd Azhar M. Arsad

Abstract:

Real-time shadow generation in virtual environments and Augmented Reality (AR) was always a hot topic in the last three decades. Lots of calculation for shadow generation among AR needs a fast algorithm to overcome this issue and to be capable of implementing in any real-time rendering. In this paper, a silhouette detection algorithm is presented to generate shadows for AR systems. Δ+ algorithm is presented based on extending edges of occluders to recognize which edges are silhouettes in the case of real-time rendering. An accurate comparison between the proposed algorithm and current algorithms in silhouette detection is done to show the reduction calculation by presented algorithm. The algorithm is tested in both virtual environments and AR systems. We think that this algorithm has the potential to be a fundamental algorithm for shadow generation in all complex environments.

Keywords: Silhouette detection, shadow volumes, real-time shadows, rendering, augmented reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
1917 Heat Forging Analysis Method on Blank Consisting of Two Metals

Authors: Takashi Ueda, Shinichi Enoki

Abstract:

Forging parts is used to automobiles; because, they have high strength and it is possible to press them into complicated shape. When itis possible to manufacture hollow forging parts, it leads to reduce weightof the automobiles. But, hollow forging parts are confined to axisymmetrical shape. Hollowforging parts that were pressed to complicated shape are expected. Therefore, we forge a blank that aluminum alloy was inserted in stainless steel. After that, we can providecomplex forging parts that are reduced weight,ifit is possible to be melted the aluminum alloy away by using different of melting points.It is necessary to establish heat forging analysis methodon blank consist of stainless steel and aluminum alloy. Because,this forging is different from conventional forging and this technology is not confirmed. In this study, we compared forging experiment with numerical analysis on the view point of forming load and shape after forming and establish how to set the material temperaturesof two metals and material property of stainless steel on the analysis method. Consequently, temperature difference of stainless steel and aluminum alloy was obtained by experiment. We got material property of stainless steel on forging experimental by compression tests. We had compared numerical analysis that was used the temperature difference of two metals and the material property of stainless steel on forging experimental with forging experiment. Forging analysis method on blankconsist of two metals was established by result of numerical analysis having agreedwith result of forging experiment.

Keywords: Forging, lightweight, analysis, hollow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
1916 Detecting and Tracking Vehicles in Airborne Videos

Authors: Hsu-Yung Cheng, Chih-Chang Yu

Abstract:

In this work, we present an automatic vehicle detection system for airborne videos using combined features. We propose a pixel-wise classification method for vehicle detection using Dynamic Bayesian Networks. In spite of performing pixel-wise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. The main novelty of the detection scheme is that the extracted combined features comprise not only pixel-level information but also region-level information. Afterwards, tracking is performed on the detected vehicles. Tracking is performed using efficient Kalman filter with dynamic particle sampling. Experiments were conducted on a wide variety of airborne videos. We do not assume prior information of camera heights, orientation, and target object sizes in the proposed framework. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging dataset.

Keywords: Vehicle Detection, Airborne Video, Tracking, Dynamic Bayesian Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
1915 Study of Water on the Surface of Nano-Silica Material: An NMR Study

Authors: J. Hassan

Abstract:

Water 2H NMR signal on the surface of nano-silica material, MCM-41, consists of two overlapping resonances. The 2H water spectrum shows a superposition of a Lorentzian line shape and the familiar NMR powder pattern line shape, indicating the existence of two spin components. Chemical exchange occurs between these two groups. Decomposition of the two signals is a crucial starting point for study the exchange process. In this article we have determined these spin component populations along with other important parameters for the 2H water NMR signal over a temperature range between 223 K and 343 K.

Keywords: Nano-Silica, surface water, NMR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
1914 Chinese Event Detection Technique Based on Dependency Parsing and Rule Matching

Authors: Weitao Lin

Abstract:

To quickly extract adequate information from large-scale unstructured text data, this paper studies the representation of events in Chinese scenarios and performs the regularized abstraction. It proposes a Chinese event detection technique based on dependency parsing and rule matching. The method first performs dependency parsing on the original utterance, then performs pattern matching at the word or phrase granularity based on the results of dependent syntactic analysis, filters out the utterances with prominent non-event characteristics, and obtains the final results. The experimental results show the effectiveness of the method.

Keywords: Natural Language Processing, Chinese event detection, rules matching, dependency parsing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174
1913 An Investigative Study into Observer based Non-Invasive Fault Detection and Diagnosis in Induction Motors

Authors: Padmakumar S., Vivek Agarwal, Kallol Roy

Abstract:

A new observer based fault detection and diagnosis scheme for predicting induction motors- faults is proposed in this paper. Prediction of incipient faults, using different variants of Kalman filter and their relative performance are evaluated. Only soft faults are considered for this work. The data generation, filter convergence issues, hypothesis testing and residue estimates are addressed. Simulink model is used for data generation and various types of faults are considered. A comparative assessment of the estimates of different observers associated with these faults is included.

Keywords: Extended Kalman Filter, Fault detection and diagnosis, Induction motor model, Unscented Kalman Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
1912 Density Clustering Based On Radius of Data (DCBRD)

Authors: A.M. Fahim, A. M. Salem, F. A. Torkey, M. A. Ramadan

Abstract:

Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, a density based clustering algorithm (DCBRD) is presented, relying on a knowledge acquired from the data by dividing the data space into overlapped regions. The proposed algorithm discovers arbitrary shaped clusters, requires no input parameters and uses the same definitions of DBSCAN algorithm. We performed an experimental evaluation of the effectiveness and efficiency of it, and compared this results with that of DBSCAN. The results of our experiments demonstrate that the proposed algorithm is significantly efficient in discovering clusters of arbitrary shape and size.

Keywords: Clustering Algorithms, Arbitrary Shape of clusters, cluster Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
1911 Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering

Authors: Dewan Md. Farid, Nouria Harbi, Suman Ahmmed, Md. Zahidur Rahman, Chowdhury Mofizur Rahman

Abstract:

Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Naïve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through naïve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions.

Keywords: Clustering, detection rate, false positive, naïveBayesian classifier, network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5536
1910 Evaluation of Classification Algorithms for Road Environment Detection

Authors: T. Anbu, K. Aravind Kumar

Abstract:

The road environment information is needed accurately for applications such as road maintenance and virtual 3D city modeling. Mobile laser scanning (MLS) produces dense point clouds from huge areas efficiently from which the road and its environment can be modeled in detail. Objects such as buildings, cars and trees are an important part of road environments. Different methods have been developed for detection of above such objects, but still there is a lack of accuracy due to the problems of illumination, environmental changes, and multiple objects with same features. In this work the comparison between different classifiers such as Multiclass SVM, kNN and Multiclass LDA for the road environment detection is analyzed. Finally the classification accuracy for kNN with LBP feature improved the classification accuracy as 93.3% than the other classifiers.

Keywords: Classifiers, feature extraction, mobile-based laser scanning, object location estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774