Search results for: K- Nearest neighborhood classifier
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 517

Search results for: K- Nearest neighborhood classifier

187 Study of Aluminum, Copper and Molybdenum Pollution in Groundwater Sources Surrounding (Miduk) Shahr-E- Babak Copper Complex Tailings Dam

Authors: Maryam Kargar, Neamatolah Khorasani, Mahmoud Karami, Gholam-Reza Rafiee, Reza Naseh

Abstract:

Interpolated contour maps drawn for aluminum, copper and molybdenum in downstream monitoring boreholes of water dam in Miduk Copper Complex and the values of pH, redox potential (Eh) and distance from water dam indicate different trends of variation and behavior of these three elements in downward groundwater resources. As these maps exhibit, aluminum is dominant in the most alkaline (pH = 9-11) borehole (MB5) to water dam. The highest concentration of molybdenum is found in the nearest borehole (MB6) to water dam. Main concentration of copper is observed in the most oxidized borehole (MB3 with Eh=293.2mV). The spatial difference among sampling stations can be attributed to the existence of faults and diaclases in the geologic structure of Miduk region which causes the groundwater sampling sites to be impressed by different contamination sources (toe seepage and upper seepage water originated from different zones of tailings dump).

Keywords: Contour maps, Monitoring borehole, Toe seepage, Upper seepage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
186 Planar Tracking Control of an Underactuated Autonomous Underwater Vehicle

Authors: Santhakumar M., Asokan T.

Abstract:

This paper addresses the problem of trajectory tracking control of an underactuated autonomous underwater vehicle (AUV) in the horizontal plane. The underwater vehicle under consideration is not actuated in the sway direction, and the system matrices are not assumed to be diagonal and linear, as often found in the literature. In addition, the effect of constant bias of environmental disturbances is considered. Using backstepping techniques and the tracking error dynamics, the system states are stabilized by forcing the tracking errors to an arbitrarily small neighborhood of zero. The effectiveness of the proposed control method is demonstrated through numerical simulations. Simulations are carried out for an experimental vehicle for smooth, inertial, two dimensional (2D) reference trajectories such as constant velocity trajectory (a circle maneuver – constant yaw rate), and time varying velocity trajectory (a sinusoidal path – sinusoidal yaw rate).

Keywords: autonomous underwater vehicle, system matrices, tracking control, time – varying feed back, underactuated control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
185 Comparative Study of Filter Characteristics as Statistical Vocal Correlates of Clinical Psychiatric State in Human

Authors: Thaweesak Yingthawornsuk, Chusak Thanawattano

Abstract:

Acoustical properties of speech have been shown to be related to mental states of speaker with symptoms: depression and remission. This paper describes way to address the issue of distinguishing depressed patients from remitted subjects based on measureable acoustics change of their spoken sound. The vocal-tract related frequency characteristics of speech samples from female remitted and depressed patients were analyzed via speech processing techniques and consequently, evaluated statistically by cross-validation with Support Vector Machine. Our results comparatively show the classifier's performance with effectively correct separation of 93% determined from testing with the subjectbased feature model and 88% from the frame-based model based on the same speech samples collected from hospital visiting interview sessions between patients and psychiatrists.

Keywords: Depression, SVM, Vocal Extract, Vocal Tract

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
184 Machine Learning in Production Systems Design Using Genetic Algorithms

Authors: Abu Qudeiri Jaber, Yamamoto Hidehiko Rizauddin Ramli

Abstract:

To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves away from bad circumstances. This can cause a species to evolve into an evolutionary dead end. In order to reduce the effect of this disadvantage we propose a new a learning tool (criteria) which can be included into the genetic algorithms generations to compare the previous population and the current population and then decide whether is effective to continue with the previous population or the current population, the proposed learning tool is called as Keeping Efficient Population (KEP). We applied a GA based on KEP to the production line layout problem, as a result KEP keep the evaluation direction increases and stops any deviation in the evaluation.

Keywords: Genetic algorithms, Layout problem, Machinelearning, Production system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
183 Empirical Mode Decomposition with Wavelet Transform Based Analytic Signal for Power Quality Assessment

Authors: Sudipta Majumdar, Amarendra Kumar Mishra

Abstract:

This paper proposes empirical mode decomposition (EMD) together with wavelet transform (WT) based analytic signal for power quality (PQ) events assessment. EMD decomposes the complex signals into several intrinsic mode functions (IMF). As the PQ events are non stationary, instantaneous parameters have been calculated from these IMFs using analytic signal obtained form WT. We obtained three parameters from IMFs and then used KNN classifier for classification of PQ disturbance. We compared the classification of proposed method for PQ events by obtaining the features using Hilbert transform (HT) method. The classification efficiency using WT based analytic method is 97.5% and using HT based analytic signal is 95.5%.

Keywords: Empirical mode decomposition, Hilbert transform, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
182 The Spatial Equity Assessment of Community-Based Elderly Care Facilities in Old Neighborhood of Chongqing

Authors: Jiayue Zhao, Hongjuan Wu, Guiwen Liu

Abstract:

Old neighborhoods with a large elderly population depend on community-based elderly care facilities (community-based ECFs) for aging-in-place. Yet, due to scarce and scattered land, the facilities face inequitable distribution. This research uses spatial equity theory for measuring the spatial equity of community-based ECFs in old neighborhoods. Field surveys gather granular data and methods including coverage rate, Gini coefficient, Lorenz curve and G2SFCA. The findings showed that coverage is substantial but does not indicate supply is matching to demand, nor does it imply superior accessibility. The key contributions are that structuring spatial equity framework considering elderly residents’ travel behavior. This study dedicated to the international literature on spatial equity from the perspective of travel behavior and could provide valuable suggestions for the urban planning of old neighborhoods.

Keywords: Community-based ECFs, elderly residents’ travel behavior, old neighborhoods, spatial equity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57
181 Intrusion Detection Using a New Particle Swarm Method and Support Vector Machines

Authors: Essam Al Daoud

Abstract:

Intrusion detection is a mechanism used to protect a system and analyse and predict the behaviours of system users. An ideal intrusion detection system is hard to achieve due to nonlinearity, and irrelevant or redundant features. This study introduces a new anomaly-based intrusion detection model. The suggested model is based on particle swarm optimisation and nonlinear, multi-class and multi-kernel support vector machines. Particle swarm optimisation is used for feature selection by applying a new formula to update the position and the velocity of a particle; the support vector machine is used as a classifier. The proposed model is tested and compared with the other methods using the KDD CUP 1999 dataset. The results indicate that this new method achieves better accuracy rates than previous methods.

Keywords: Feature selection, Intrusion detection, Support vector machine, Particle swarm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
180 Dynamic Time Warping in Gait Classificationof Motion Capture Data

Authors: Adam Świtoński, Agnieszka Michalczuk, Henryk Josiński, Andrzej Polański, KonradWojciechowski

Abstract:

The method of gait identification based on the nearest neighbor classification technique with motion similarity assessment by the dynamic time warping is proposed. The model based kinematic motion data, represented by the joints rotations coded by Euler angles and unit quaternions is used. The different pose distance functions in Euler angles and quaternion spaces are considered. To evaluate individual features of the subsequent joints movements during gait cycle, joint selection is carried out. To examine proposed approach database containing 353 gaits of 25 humans collected in motion capture laboratory is used. The obtained results are promising. The classifications, which takes into consideration all joints has accuracy over 91%. Only analysis of movements of hip joints allows to correctly identify gaits with almost 80% precision.

Keywords: Biometrics, dynamic time warping, gait identification, motion capture, time series classification, quaternion distance functions, attribute ranking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2611
179 Cognition Technique for Developing a World Music

Authors: Haider Javed Uppal, Javed Yunas Uppal

Abstract:

In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm, and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.

Keywords: Cognition, world music, artificial intelligence, Thayer’s matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170
178 Automatic Lip Contour Tracking and Visual Character Recognition for Computerized Lip Reading

Authors: Harshit Mehrotra, Gaurav Agrawal, M.C. Srivastava

Abstract:

Computerized lip reading has been one of the most actively researched areas of computer vision in recent past because of its crime fighting potential and invariance to acoustic environment. However, several factors like fast speech, bad pronunciation, poor illumination, movement of face, moustaches and beards make lip reading difficult. In present work, we propose a solution for automatic lip contour tracking and recognizing letters of English language spoken by speakers using the information available from lip movements. Level set method is used for tracking lip contour using a contour velocity model and a feature vector of lip movements is then obtained. Character recognition is performed using modified k nearest neighbor algorithm which assigns more weight to nearer neighbors. The proposed system has been found to have accuracy of 73.3% for character recognition with speaker lip movements as the only input and without using any speech recognition system in parallel. The approach used in this work is found to significantly solve the purpose of lip reading when size of database is small.

Keywords: Contour Velocity Model, Lip Contour Tracking, LipReading, Visual Character Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
177 Delivery System Design of the Local Part to Reduce the Logistic Costs in an Automotive Industry

Authors: Inaki Maulida Hakim, Alesandro Romero

Abstract:

This research was conducted in an automotive company in Indonesia to overcome the problem of high logistics cost. The problem causes high of additional truck delivery. From the breakdown of the problem, chosen one route, which has the highest gap value, namely for RE-04. Research methodology will be started from calculating the ideal condition, making simulation, calculating the ideal logistic cost, and proposing an improvement. From the calculation of the ideal condition, box arrangement was done on the truck has efficiency with three trucks delivery per day. Route simulation making uses Tecnomatix Plant Simulation software as a visualization for the company about how the system is occurred on route RE-04 in ideal condition. The last step is proposing improvements on the area of route RE-04. The route arrangement is done by Saving Method and sequence of each supplier with the Nearest Neighbor. The results of the proposed improvements are three new route groups, where was expected to decrease logistics cost and increase the average of the truck efficiency per day.

Keywords: Logistic cost, milkrun, simulation, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
176 Numerical Simulation of the Turbulent Flow over a Three-Dimensional Flat Roof

Authors: M. Raciti Castelli, A. Castelli, E. Benini

Abstract:

The flow field over a flat roof model building has been numerically investigated in order to determine threedimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data. Wind tunnel measurements and numerical predictions have been compared for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions. The proposed calculations have allowed the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a three-dimensional roof architecture dominated by flow separation.

Keywords: CFD, roof, building, wind

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
175 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features

Authors: Birmohan Singh, V. K. Jain

Abstract:

Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support vector machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and an accuracy of 96% for mammogram images collected from digital database for screening mammography database.

Keywords: Architecture Distortion, GLCM Texture features, GLRLM Texture Features, Mammograms, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
174 Binary Classification Tree with Tuned Observation-based Clustering

Authors: Maythapolnun Athimethphat, Boontarika Lerteerawong

Abstract:

There are several approaches for handling multiclass classification. Aside from one-against-one (OAO) and one-against-all (OAA), hierarchical classification technique is also commonly used. A binary classification tree is a hierarchical classification structure that breaks down a k-class problem into binary sub-problems, each solved by a binary classifier. In each node, a set of classes is divided into two subsets. A good class partition should be able to group similar classes together. Many algorithms measure similarity in term of distance between class centroids. Classes are grouped together by a clustering algorithm when distances between their centroids are small. In this paper, we present a binary classification tree with tuned observation-based clustering (BCT-TOB) that finds a class partition by performing clustering on observations instead of class centroids. A merging step is introduced to merge any insignificant class split. The experiment shows that performance of BCT-TOB is comparable to other algorithms.

Keywords: multiclass classification, hierarchical classification, binary classification tree, clustering, observation-based clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
173 Improvement in Power Transformer Intelligent Dissolved Gas Analysis Method

Authors: S. Qaedi, S. Seyedtabaii

Abstract:

Non-Destructive evaluation of in-service power transformer condition is necessary for avoiding catastrophic failures. Dissolved Gas Analysis (DGA) is one of the important methods. Traditional, statistical and intelligent DGA approaches have been adopted for accurate classification of incipient fault sources. Unfortunately, there are not often enough faulty patterns required for sufficient training of intelligent systems. By bootstrapping the shortcoming is expected to be alleviated and algorithms with better classification success rates to be obtained. In this paper the performance of an artificial neural network, K-Nearest Neighbour and support vector machine methods using bootstrapped data are detailed and shown that while the success rate of the ANN algorithms improves remarkably, the outcome of the others do not benefit so much from the provided enlarged data space. For assessment, two databases are employed: IEC TC10 and a dataset collected from reported data in papers. High average test success rate well exhibits the remarkable outcome.

Keywords: Dissolved gas analysis, Transformer incipient fault, Artificial Neural Network, Support Vector Machine (SVM), KNearest Neighbor (KNN)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740
172 A Hybrid Approach for Selection of Relevant Features for Microarray Datasets

Authors: R. K. Agrawal, Rajni Bala

Abstract:

Developing an accurate classifier for high dimensional microarray datasets is a challenging task due to availability of small sample size. Therefore, it is important to determine a set of relevant genes that classify the data well. Traditionally, gene selection method often selects the top ranked genes according to their discriminatory power. Often these genes are correlated with each other resulting in redundancy. In this paper, we have proposed a hybrid method using feature ranking and wrapper method (Genetic Algorithm with multiclass SVM) to identify a set of relevant genes that classify the data more accurately. A new fitness function for genetic algorithm is defined that focuses on selecting the smallest set of genes that provides maximum accuracy. Experiments have been carried on four well-known datasets1. The proposed method provides better results in comparison to the results found in the literature in terms of both classification accuracy and number of genes selected.

Keywords: Gene selection, genetic algorithm, microarray datasets, multi-class SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
171 Modeling of Cross Flow Classifier with Water Injection

Authors: E. Pikushchak, J. Dueck, L. Minkov

Abstract:

In hydrocyclones, the particle separation efficiency is limited by the suspended fine particles, which are discharged with the coarse product in the underflow. It is well known that injecting water in the conical part of the cyclone reduces the fine particle fraction in the underflow. This paper presents a mathematical model that simulates the water injection in the conical component. The model accounts for the fluid flow and the particle motion. Particle interaction, due to hindered settling caused by increased density and viscosity of the suspension, and fine particle entrainment by settling coarse particles are included in the model. Water injection in the conical part of the hydrocyclone is performed to reduce fine particle discharge in the underflow. The model demonstrates the impact of the injection rate, injection velocity, and injection location on the shape of the partition curve. The simulations are compared with experimental data of a 50-mm cyclone.

Keywords: Classification, fine particle processing, hydrocyclone, water injection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
170 Fusion of ETM+ Multispectral and Panchromatic Texture for Remote Sensing Classification

Authors: Mahesh Pal

Abstract:

This paper proposes to use ETM+ multispectral data and panchromatic band as well as texture features derived from the panchromatic band for land cover classification. Four texture features including one 'internal texture' and three GLCM based textures namely correlation, entropy, and inverse different moment were used in combination with ETM+ multispectral data. Two data sets involving combination of multispectral, panchromatic band and its texture were used and results were compared with those obtained by using multispectral data alone. A decision tree classifier with and without boosting were used to classify different datasets. Results from this study suggest that the dataset consisting of panchromatic band, four of its texture features and multispectral data was able to increase the classification accuracy by about 2%. In comparison, a boosted decision tree was able to increase the classification accuracy by about 3% with the same dataset.

Keywords: Internal texture; GLCM; decision tree; boosting; classification accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
169 Effect of Neighborhood Size on Negative Weights in Punctual Kriging Based Image Restoration

Authors: Asmatullah Chaudhry, Anwar M. Mirza

Abstract:

We present a general comparison of punctual kriging based image restoration for different neighbourhood sizes. The formulation of the technique under consideration is based on punctual kriging and fuzzy concepts for image restoration in spatial domain. Three different neighbourhood windows are considered to estimate the semivariance at different lags for studying its effect in reduction of negative weights resulted in punctual kriging, consequently restoration of degraded images. Our results show that effect of neighbourhood size higher than 5x5 on reduction in negative weights is insignificant. In addition, image quality measures, such as structure similarity indices, peak signal to noise ratios and the new variogram based quality measures; show that 3x3 window size gives better performance as compared with larger window sizes.

Keywords: Image restoration, punctual kriging, semi-variance, structure similarity index, negative weights in punctual kriging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
168 Recognition of Grocery Products in Images Captured by Cellular Phones

Authors: Farshideh Einsele, Hassan Foroosh

Abstract:

In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using well-known geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.

Keywords: Camera-based OCR, Feature extraction, Document and image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
167 Capacitor Placement in Radial Distribution System for Loss Reduction Using Artificial Bee Colony Algorithm

Authors: R. Srinivasa Rao

Abstract:

This paper presents a new method which applies an artificial bee colony algorithm (ABC) for capacitor placement in distribution systems with an objective of improving the voltage profile and reduction of power loss. The ABC algorithm is a new population based meta heuristic approach inspired by intelligent foraging behavior of honeybee swarm. The advantage of ABC algorithm is that it does not require external parameters such as cross over rate and mutation rate as in case of genetic algorithm and differential evolution and it is hard to determine these parameters in prior. The other advantage is that the global search ability in the algorithm is implemented by introducing neighborhood source production mechanism which is a similar to mutation process. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on 69-bus system and compared the results with the other approach available in the literature. The proposed method has outperformed the other methods in terms of the quality of solution and computational efficiency.

Keywords: Distribution system, Capacitor Placement, Loss reduction, Artificial Bee Colony Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2817
166 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines

Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun

Abstract:

This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.

Keywords: Capacitated MRP, non-population search algorithms, linear programming, assembly flow shop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 959
165 Multivariate Analysis of Spectroscopic Data for Agriculture Applications

Authors: Asmaa M. Hussein, Amr Wassal, Ahmed Farouk Al-Sadek, A. F. Abd El-Rahman

Abstract:

In this study, a multivariate analysis of potato spectroscopic data was presented to detect the presence of brown rot disease or not. Near-Infrared (NIR) spectroscopy (1,350-2,500 nm) combined with multivariate analysis was used as a rapid, non-destructive technique for the detection of brown rot disease in potatoes. Spectral measurements were performed in 565 samples, which were chosen randomly at the infection place in the potato slice. In this study, 254 infected and 311 uninfected (brown rot-free) samples were analyzed using different advanced statistical analysis techniques. The discrimination performance of different multivariate analysis techniques, including classification, pre-processing, and dimension reduction, were compared. Applying a random forest algorithm classifier with different pre-processing techniques to raw spectra had the best performance as the total classification accuracy of 98.7% was achieved in discriminating infected potatoes from control.

Keywords: Brown rot disease, NIR spectroscopy, potato, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887
164 Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data

Authors: R.Guzman-Martinez, Oscar Garcia-Olalla, R.Alaiz-Rodriguez

Abstract:

Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.

Keywords: Feature Selection Stability, Spectral data, Data visualization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
163 Study of Features for Hand-printed Recognition

Authors: Satish Kumar

Abstract:

The feature extraction method(s) used to recognize hand-printed characters play an important role in ICR applications. In order to achieve high recognition rate for a recognition system, the choice of a feature that suits for the given script is certainly an important task. Even if a new feature required to be designed for a given script, it is essential to know the recognition ability of the existing features for that script. Devanagari script is being used in various Indian languages besides Hindi the mother tongue of majority of Indians. This research examines a variety of feature extraction approaches, which have been used in various ICR/OCR applications, in context to Devanagari hand-printed script. The study is conducted theoretically and experimentally on more that 10 feature extraction methods. The various feature extraction methods have been evaluated on Devanagari hand-printed database comprising more than 25000 characters belonging to 43 alphabets. The recognition ability of the features have been evaluated using three classifiers i.e. k-NN, MLP and SVM.

Keywords: Features, Hand-printed, Devanagari, Classifier, Database

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
162 Image Mapping with Cumulative Distribution Function for Quick Convergence of Counter Propagation Neural Networks in Image Compression

Authors: S. Anna Durai, E. Anna Saro

Abstract:

In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Counter Propagation Neural Network, it takes longer time to converge. The reason for this is that the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbor with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative Distribution Function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used the Counter Propagation Neural Network yield high compression ratio as well as it converges quickly.

Keywords: Correlation, Counter Propagation Neural Networks, Cummulative Distribution Function, Image compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
161 Forecasting Fraudulent Financial Statements using Data Mining

Authors: S. Kotsiantis, E. Koumanakos, D. Tzelepis, V. Tampakas

Abstract:

This paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. The decision of which particular method to choose is a complicated problem. A good alternative to choosing only one method is to create a hybrid forecasting system incorporating a number of possible solution methods as components (an ensemble of classifiers). For this purpose, we have implemented a hybrid decision support system that combines the representative algorithms using a stacking variant methodology and achieves better performance than any examined simple and ensemble method. To sum up, this study indicates that the investigation of financial information can be used in the identification of FFS and underline the importance of financial ratios.

Keywords: Machine learning, stacking, classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3056
160 Harmonic Parameters with HHT and Wavelet Transform for Automatic Sleep Stages Scoring

Authors: Wei-Chih Tang, Shih-Wei Lu, Chih-Mong Tsai, Cheng-Yan Kao, Hsiu-Hui Lee

Abstract:

Previously, harmonic parameters (HPs) have been selected as features extracted from EEG signals for automatic sleep scoring. However, in previous studies, only one HP parameter was used, which were directly extracted from the whole epoch of EEG signal. In this study, two different transformations were applied to extract HPs from EEG signals: Hilbert-Huang transform (HHT) and wavelet transform (WT). EEG signals are decomposed by the two transformations; and features were extracted from different components. Twelve parameters (four sets of HPs) were extracted. Some of the parameters are highly diverse among different stages. Afterward, HPs from two transformations were used to building a rough sleep stages scoring model using the classifier SVM. The performance of this model is about 78% using the features obtained by our proposed extractions. Our results suggest that these features may be useful for automatic sleep stages scoring.

Keywords: EEG, harmonic parameter, Hilbert-Huang transform, sleep stages, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
159 Distinguishing Innocent Murmurs from Murmurs caused by Aortic Stenosis by Recurrence Quantification Analysis

Authors: Christer Ahlstrom, Katja Höglund, Peter Hult, Jens Häggström, Clarence Kvart, Per Ask

Abstract:

It is sometimes difficult to differentiate between innocent murmurs and pathological murmurs during auscultation. In these difficult cases, an intelligent stethoscope with decision support abilities would be of great value. In this study, using a dog model, phonocardiographic recordings were obtained from 27 boxer dogs with various degrees of aortic stenosis (AS) severity. As a reference for severity assessment, continuous wave Doppler was used. The data were analyzed with recurrence quantification analysis (RQA) with the aim to find features able to distinguish innocent murmurs from murmurs caused by AS. Four out of eight investigated RQA features showed significant differences between innocent murmurs and pathological murmurs. Using a plain linear discriminant analysis classifier, the best pair of features (recurrence rate and entropy) resulted in a sensitivity of 90% and a specificity of 88%. In conclusion, RQA provide valid features which can be used for differentiation between innocent murmurs and murmurs caused by AS.

Keywords: Bioacoustics, murmur, phonocardiographic signal, recurrence quantification analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
158 Quality of Life of Poor Residential Neighborhoods in Oshogbo, Nigeria

Authors: Funmilayo L. Amao

Abstract:

As a result of the high cost of housing, the increasing population is forced to live in substandard housing and unhealthy conditions giving rise to poor residential neighborhoods. The paper examines the causes and characteristics of poor residential neighborhood. The paper finds the problems that have influence poor neighborhoods to; poverty, growth of informal sector and housing shortage. The paper asserts that poor residential neighborhoods have adverse effects on the people.

The secondary data was obtained from books, journals and seminar papers while primary data relating to building and environmental quality from structured questionnaire administered on sample of 500 household heads, from sampling frame of 5000 housing units.

The study reveals that majority of the respondents are poor and employed in informal sector. The paper suggests urban renewal and slum upgrading programs as methods in dealing with the situation and an improvement in the socio-economic circumstances of the inhabitants.

Keywords: Environmental Degeneration, Housing, Poverty, Quality of life, Urban Upgrading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3461