Search results for: strength characteristics.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3690

Search results for: strength characteristics.

150 Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia

Authors: Abdulraaof H. Alqaili, Hamad A. Alsoliman

Abstract:

Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper.

Keywords: Mechanistic-empirical pavement design guide, traffic characteristics, materials properties, climate, Riyadh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1221
149 Development of an Impregnated Diamond Bit with an Improved Rate of Penetration

Authors: Tim Dunne, Weicheng Li, Chris Cheng, Qi Peng

Abstract:

Deeper petroleum reservoirs are more challenging to exploit due to the high hardness and abrasive characteristics of the formations. A cutting structure that consists of particulate diamond impregnated in a supporting matrix is found to be effective. Diamond impregnated bits are favored in these applications due to the higher thermal stability of the matrix material. The diamond particles scour or abrade away concentric grooves while the rock formation adjacent to the grooves is fractured and removed. The matrix material supporting the diamond will wear away, leaving the superficial dull diamonds to fall out. The matrix material wear will expose other embedded intact sharp diamonds to continue the operation. Minimizing the erosion effect on the matrix is an important design consideration, as the life of the bit can be extended by preventing early diamond pull-out. A careful balancing of the key parameters, such as diamond concentration, tungsten carbide and metal binder must be considered during development. Described herein is the design of experiment for developing and lab testing 8 unique samples. ASTM B611 wear testing was performed to benchmark the material performance against baseline products, with further scanning electron microscopy and microhardness evaluations. The recipe S5 with diamond 25/35 mesh size, narrow size distribution, high concentration blended with fine tungsten carbide and Co-Cu-Fe-P metal binder has the best performance, which shows 19% improvement in the ASTM B611 wear test compared with the reference material. In the field trial, the rate of penetration (ROP) is measured as 15 m/h, compared to 9.5, 7.8, and 6.8 m/h of other commercial impregnated bits in the same formation. A second round of optimizing recipe S5 for a higher wear resistance is further reported.

Keywords: Diamond containing material, grit hot press insert, impregnated diamond, insert, rate of penetration, ultrahard formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 374
148 Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car

Authors: Erik Vassøy Olsen, Hirpa G. Lemu

Abstract:

Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat racecar they have designed and built. Design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the competition requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm, so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions.

Keywords: Composite material, formula student, ion racing, monocoque design, structural equivalence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6224
147 Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations

Authors: Ragi Poyyara, Vijaya Patnana, Mohammed Alam

Abstract:

When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.

Keywords: Acid treatment, carbonate, diversion, sandstone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4048
146 A Hybrid Image Fusion Model for Generating High Spatial-Temporal-Spectral Resolution Data Using OLI-MODIS-Hyperion Satellite Imagery

Authors: Yongquan Zhao, Bo Huang

Abstract:

Spatial, Temporal, and Spectral Resolution (STSR) are three key characteristics of Earth observation satellite sensors; however, any single satellite sensor cannot provide Earth observations with high STSR simultaneously because of the hardware technology limitations of satellite sensors. On the other hand, a conflicting circumstance is that the demand for high STSR has been growing with the remote sensing application development. Although image fusion technology provides a feasible means to overcome the limitations of the current Earth observation data, the current fusion technologies cannot enhance all STSR simultaneously and provide high enough resolution improvement level. This study proposes a Hybrid Spatial-Temporal-Spectral image Fusion Model (HSTSFM) to generate synthetic satellite data with high STSR simultaneously, which blends the high spatial resolution from the panchromatic image of Landsat-8 Operational Land Imager (OLI), the high temporal resolution from the multi-spectral image of Moderate Resolution Imaging Spectroradiometer (MODIS), and the high spectral resolution from the hyper-spectral image of Hyperion to produce high STSR images. The proposed HSTSFM contains three fusion modules: (1) spatial-spectral image fusion; (2) spatial-temporal image fusion; (3) temporal-spectral image fusion. A set of test data with both phenological and land cover type changes in Beijing suburb area, China is adopted to demonstrate the performance of the proposed method. The experimental results indicate that HSTSFM can produce fused image that has good spatial and spectral fidelity to the reference image, which means it has the potential to generate synthetic data to support the studies that require high STSR satellite imagery.

Keywords: Hybrid spatial-temporal-spectral fusion, high resolution synthetic imagery, least square regression, sparse representation, spectral transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
145 Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company

Authors: Charles Chikwendu Okpala, Christopher Chukwutoo Ihueze

Abstract:

As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company’s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting.

Keywords: Taguchi Robust Design, signal to noise ratio, Single Minute Exchange of Dies, lean production system, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
144 Kinetic, Thermodynamic and Process Modeling of Synthesis of UV Curable Glyceryl and Neopentyl Glycol Acrylates

Authors: R. D. Kulkarni, Mayur Chaudhari, S. Mishra

Abstract:

Curing of paints by exposure to UV radiations is emerging as one of the best film forming technique as an alternative to traditional solvent borne oxidative and thermal curing coatings. The composition and chemistry of UV curable coatings and role of multifunctional and monofunctional monomers, oligomers, and photoinitiators have been discussed. The limitations imposed by thermodynamic equilibrium and tendency for acrylic double bond polymerizations during synthesis of multifunctional acrylates have been presented. Aim of present investigation was thus to explore the reaction variables associated with synthesis of multifunctional acrylates. Zirconium oxychloride was evaluated as catalyst against regular acid functional catalyst. The catalyzed synthesis of glyceryl acrylate and neopentyl glycol acrylate was conducted by variation of following reaction parameters: two different reactant molar ratios- 1:4 and 1:6; catalyst usage in % by moles on polyol- 2.5, 5.0 and 7.5 and two different reaction temperatures- 45 and 75 0C. The reaction was monitored by determination of acid value and hydroxy value at regular intervals, besides TLC, HPLC, and FTIR analysis of intermediates and products. On the basis of determination of reaction progress over 1-60 hrs, the esterification reaction was observed to follow 2nd order kinetics with rate constant varying from 1*10-4 to 7*10-4. The thermal and catalytic components of second order rate constant and energy of activation were also determined. Uses of these kinetic and thermodynamic parameters in design of reactor for manufacture of multifunctional acrylate ester have been presented. The synthesized multifunctional acrylates were used to formulate and apply UV curable clear coat followed by determination of curing characteristics and mechanical properties of cured film. The overall curing rates less than 05 min. were easily attained indicating economical viability of radiation curable system due to faster production schedules

Keywords: glyceryl acrylate, neopentyl glycol acrylate, kinetic modeling, zirconium oxychloride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306
143 Fuzzy Power Controller Design for Purdue University Research Reactor-1

Authors: Oktavian Muhammad Rizki, Appiah Rita, Lastres Oscar, Miller True, Chapman Alec, Tsoukalas Lefteri H.

Abstract:

The Purdue University Research Reactor-1 (PUR-1) is a 10 kWth pool-type research reactor located at Purdue University’s West Lafayette campus. The reactor was recently upgraded to use entirely digital instrumentation and control systems. However, currently, there is no automated control system to regulate the power in the reactor. We propose a fuzzy logic controller as a form of digital twin to complement the existing digital instrumentation system to monitor and stabilize power control using existing experimental data. This work assesses the feasibility of a power controller based on a Fuzzy Rule-Based System (FRBS) by modelling and simulation with a MATLAB algorithm. The controller uses power error and reactor period as inputs and generates reactivity insertion as output. The reactivity insertion is then converted to control rod height using a logistic function based on information from the recorded experimental reactor control rod data. To test the capability of the proposed fuzzy controller, a point-kinetic reactor model is utilized based on the actual PUR-1 operation conditions and a Monte Carlo N-Particle simulation result of the core to numerically compute the neutronics parameters of reactor behavior. The Point Kinetic Equation (PKE) was employed to model dynamic characteristics of the research reactor since it explains the interactions between the spatial and time varying input and output variables efficiently. The controller is demonstrated computationally using various cases: startup, power maneuver, and shutdown. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the reactor power to follow demand power without compromising nuclear safety measures.

Keywords: Fuzzy logic controller, power controller, reactivity, research reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
142 Hydrodynamic Performance of a Moored Barge in Irregular Wave

Authors: Srinivasan Chandrasekaran, Shihas A. Khader

Abstract:

Motion response of floating structures is of great concern in marine engineering. Nonlinearity is an inherent property of any floating bodies subjected to irregular waves. These floating structures are continuously subjected to environmental loadings from wave, current, wind etc. This can result in undesirable motions of the vessel which may challenge the operability. For a floating body to remain in its position, it should be able to induce a restoring force when displaced. Mooring is provided to enable this restoring force. This paper discusses the hydrodynamic performance and motion characteristics of an 8 point spread mooring system applied to a pipe laying barge operating in the West African sea. The modelling of the barge is done using a computer aided-design (CAD) software RHINOCEROS. Irregular waves are generated using a suitable wave spectrum. Both frequency domain and time domain analysis is done. Numerical simulations based on potential theory are carried out to find the responses and hydrodynamic performance of the barge in both free floating as well as moored conditions. Initially, potential flow frequency domain analysis is done to obtain the Response Amplitude Operator (RAO) which gives an idea about the structural motion in free floating state. RAOs for different wave headings are analyzed. In the following step, a time domain analysis is carried out to obtain the responses of the structure in the moored condition. In this study, wave induced motions are only taken into consideration. Wind and current loads are ruled out and shall be included in further studies. For the current study, 2000 seconds simulation is taken. The results represent wave induced motion responses, mooring line tensions and identify critical mooring lines.

Keywords: Irregular wave, moored barge, time domain analysis, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
141 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling

Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo

Abstract:

Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.

Keywords: Computational modelling, evolutionary algorithms, genetic programming, hydrological modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3329
140 Synthesis of PVA/γ-Fe2O3 Used in Cancer Treatment by Hyperthermia

Authors: Sajjad Seifi Mofarah, S. K. Sadrnezhaad, Shokooh Moghadam, Javad Tavakoli

Abstract:

In recent years a new method of combination treatment for cancer has been developed and studied that has led to significant advancements in the field of cancer therapy. Hyperthermia is a traditional therapy that, along with a creation of a medically approved level of heat with the help of an alternating magnetic AC current, results in the destruction of cancer cells by heat. This paper gives details regarding the production of the spherical nanocomposite PVA/γ-Fe2O3 in order to be used for medical purposes such as tumor treatment by hyperthermia. To reach a suitable and evenly distributed temperature, the nanocomposite with core-shell morphology and spherical form within a 100 to 200 nanometer size was created using phase separation emulsion, in which the magnetic nano-particles γ- Fe2O3 with an average particle size of 20 nano-meters and with different percentages of 0.2, 0.4, 0.5 and 0.6 were covered by polyvinyl alcohol. The main concern in hyperthermia and heat treatment is achieving desirable specific absorption rate (SAR) and one of the most critical factors in SAR is particle size. In this project all attempts has been done to reach minimal size and consequently maximum SAR. The morphological analysis of the spherical structure of the nanocomposite PVA/γ-Fe2O3 was achieved by SEM analyses and the study of the chemical bonds created was made possible by FTIR analysis. To investigate the manner of magnetic nanocomposite particle size distribution a DLS experiment was conducted. Moreover, to determine the magnetic behavior of the γ- Fe2O3 particle and the nanocomposite PVA/γ-Fe2O3 in different concentrations a VSM test was conducted. To sum up, creating magnetic nanocomposites with a spherical morphology that would be employed for drug loading opens doors to new approaches in developing nanocomposites that provide efficient heat and a controlled release of drug simultaneously inside the magnetic field, which are among their positive characteristics that could significantly improve the recovery process in patients.

Keywords: Nanocomposite, hyperthermia, cancer therapy, drug release.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4745
139 Res2ValHUM: Creation of Resource Management Tool and Microbial Consortia Isolation and Identification

Authors: A. Ribeiro, N. Valério, C. Vilarinho, J. Araujo, J. Carvalho

Abstract:

Res2ValHUM project involves institutions from the Spanish Autonomous Region of Galicia and the north of Portugal (districts of Porto and Braga) and has as overall objectives of promotion of composting as an process for the correct managing of organic waste, valorization of compost in different fields or applications for the constitution of products with high added value, reducing of raw materials losses, and reduction of the amount of waste throw in landfills. Three main actions were designed to achieve the objectives: development of a management tool to improve collection and residue channeling for composting, sensibilization of the population for composting and characterization of the chemical and biological properties of compost and humic and fulvic substances to envisage high-value applications of compost. Here we present the cooperative activity of Galician and northern Portuguese institutions to valorize organic waste in both regions with common socio-economic characteristics and residue management problems. Results from the creation of the resource manage tool proved the existence of a large number of agricultural wastes that could be valorized. In the North of Portugal, the wastes from maize, oats, potato, apple, grape pomace, rye, and olive pomace can be highlighted. In the Autonomous Region of Galicia the wastes from maize, wheat, potato, apple, and chestnuts can be emphasized. Regarding the isolation and identification of microbial consortia from compost samples, results proved microorganisms belong mainly to the genus Bacillus spp. Among all the species identified in compost samples, Bacillus licheniformis can be highlighted in the production of humic and fulvic acids.

Keywords: Agricultural wastes, Bacillus licheniformis, Bacillus spp., Humic-acids, Fulvic-acids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
138 A Comparative Study on Biochar from Slow Pyrolysis of Corn Cob and Cassava Wastes

Authors: Adilah Shariff, Nurhidayah Mohamed Noor, Alexander Lau, Muhammad Azwan Mohd Ali

Abstract:

Biomass such as corn and cassava wastes if left to decay will release significant quantities of greenhouse gases (GHG) including carbon dioxide and methane. The biomass wastes can be converted into biochar via thermochemical process such as slow pyrolysis. This approach can reduce the biomass wastes as well as preserve its carbon content. Biochar has the potential to be used as a carbon sequester and soil amendment. The aim of this study is to investigate the characteristics of the corn cob, cassava stem, and cassava rhizome in order to identify their potential as pyrolysis feedstocks for biochar production. This was achieved by using the proximate and elemental analyses as well as calorific value and lignocellulosic determination. The second objective is to investigate the effect of pyrolysis temperature on the biochar produced. A fixed bed slow pyrolysis reactor was used to pyrolyze the corn cob, cassava stem, and cassava rhizome. The pyrolysis temperatures were varied between 400 °C and 600 °C, while the heating rate and the holding time were fixed at 5 °C/min and 1 hour, respectively. Corn cob, cassava stem, and cassava rhizome were found to be suitable feedstocks for pyrolysis process because they contained a high percentage of volatile matter more than 80 mf wt.%. All the three feedstocks contained low nitrogen and sulphur content less than 1 mf wt.%. Therefore, during the pyrolysis process, the feedstocks give off very low rate of GHG such as nitrogen oxides and sulphur oxides. Independent of the types of biomass, the percentage of biochar yield is inversely proportional to the pyrolysis temperature. The highest biochar yield for each studied temperature is from slow pyrolysis of cassava rhizome as the feedstock contained the highest percentage of ash compared to the other two feedstocks. The percentage of fixed carbon in all the biochars increased as the pyrolysis temperature increased. The increment of pyrolysis temperature from 400 °C to 600 °C increased the fixed carbon of corn cob biochar, cassava stem biochar and cassava rhizome biochar by 26.35%, 10.98%, and 6.20% respectively. Irrespective of the pyrolysis temperature, all the biochars produced were found to contain more than 60 mf wt.% fixed carbon content, much higher than its feedstocks.

Keywords: Biochar, biomass, cassava wastes, corn cob, pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
137 Analytical Investigation of Sediment Formation and Transport in the Vicinity of the Water Intake Structures - A Case Study of the Dez Diversion Weir in Greater Dezful

Authors: M.karavanmasjedi, N.Hedayat , A.Rohani, H.Shirin

Abstract:

Sedimentation process resulting from soil erosion in the water basin especially in arid and semi-arid where poor vegetation cover in the slope of the mountains upstream could contribute to sediment formation. The consequence of sedimentation not only makes considerable change in the morphology of the river and the hydraulic characteristics but would also have a major challenge for the operation and maintenance of the canal network which depend on water flow to meet the stakeholder-s requirements. For this reason mathematical modeling can be used to simulate the effective factors on scouring, sediment transport and their settling along the waterways. This is particularly important behind the reservoirs which enable the operators to estimate the useful life of these hydraulic structures. The aim of this paper is to simulate the sedimentation and erosion in the eastern and western water intake structures of the Dez Diversion weir using GSTARS-3 software. This is done to estimate the sedimentation and investigate the ways in which to optimize the process and minimize the operational problems. Results indicated that the at the furthest point upstream of the diversion weir, the coarser sediment grains tended to settle. The reason for this is the construction of the phantom bridge and the outstanding rocks just upstream of the structure. The construction of these along the river course has reduced the momentum energy require to push the sediment loads and make it possible for them to settle wherever the river regime allows it. Results further indicated a trend for the sediment size in such a way that as the focus of study shifts downstream the size of grains get smaller and vice versa. It was also found that the finding of the GSTARS-3 had a close proximity with the sets of the observed data. This suggests that the software is a powerful analytical tool which can be applied in the river engineering project with a minimum of costs and relatively accurate results.

Keywords: Erosion, sedimentation, Dez Diversion weir, GSTARS-3

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
136 Rolling Element Bearing Diagnosis by Improved Envelope Spectrum: Optimal Frequency Band Selection

Authors: Juan David Arango, Alejandro Restrepo-Martinez

Abstract:

The Rolling Element Bearing (REB) vibration diagnosis is worth of special interest by the variety of REB and the wide necessity of those elements in industrial applications. The presence of a localized fault in a REB gives rise to a vibrational response, characterized by the modulation of a carrier signal. Frequency content of carrier signal (Spectral Frequency –f) is mainly related to resonance frequencies of the REB. This carrier signal is modulated by another signal, governed by the periodicity of the fault impact (Cyclic Frequency –α). In this sense, REB fault vibration response gives rise to a second-order cyclostationary signal. Second order cyclostationary signals could be represented in a bi-spectral map, where Spectral Coherence –SCoh are plotted against f and α. The Improved Envelope Spectrum –IES, is a useful approach to execute REB fault diagnosis. IES could be applied by the integration of SCoh over a predefined bandwidth on the f axis. Approaches to select f-bandwidth have been recently exposed by the definition of a metric which intends to evaluate the magnitude of the IES at the fault characteristics frequencies. This metric is represented in a 1/3-binary tree as a function of the frequency bandwidth and centre. Based on this binary tree the optimal frequency band is selected. However, some advantages have been seen if the metric is changed, which in fact tends to dictate different optimal f-bandwidth and so improve the IES representation. This paper evaluates the behaviour of the IES from a different metric optimization. This metric is based on the sample correlation coefficient, detecting high peaks in the selected frequencies while penalizing high peaks in the neighbours of the selected frequencies. Prior results indicate an improvement on the signal-noise ratio (SNR) on around 86% of samples analysed, which belong to IMS database.

Keywords: Sample Correlation IESFOgram, cyclostationary analysis, improved envelope spectrum, IES, rolling element bearing diagnosis, spectral coherence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
135 Influence of Inhomogeneous Wind Fields on the Aerostatic Stability of a Cable-Stayed Pedestrian Bridge without Backstays: Experiments and Numerical Simulations

Authors: Yanru Wu, Qing Sun

Abstract:

Sightseeing glass bridges located in steep valley area are being built on a large scale owing to the development of tourism. Consequently, their aerostatic stability is seriously affected by the wind field characteristics created by strong wind and special terrain, such as wind speed and wind attack angle. For instance, a cable-stayed pedestrian bridge without backstays comprised of a 60-m cantilever girder and the glass bridge deck is located in an abrupt valley, acting as a viewing platform. The bridge’s nonlinear aerostatic stability was analyzed by the segmental model test and numerical simulation in this paper. Based on aerostatic coefficients of the main girder measured in wind tunnel tests, nonlinear influences caused by the structure and aerostatic load, inhomogeneous distribution of torsion angle along the bridge axis, and the influence of initial attack angle were analyzed by using the incremental double iteration method. The results show that the aerostatic response varying with speed shows an obvious nonlinearity, and the aerostatic instability mode is of the characteristic of space deformation of bending-twisting coupling mode. The vertical and torsional deformation of the main girder is larger than its lateral deformation, with the wind speed approaching the critical wind speed. The flow of negative attack angle will reduce the bridges’ critical stability wind speed, but the influence of the negative attack angle on the aerostatic stability is more significant than that of the positive attack angle. The critical wind speeds of torsional divergence and lateral buckling are both larger than 200 m/s; namely, the bridge will not occur aerostatic instability under the action of various wind attack angles.

Keywords: Aerostatic nonlinearity, cable-stayed pedestrian bridge, numerical simulation, nonlinear aerostatic stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
134 Current Deflecting Wall: A Promising Structure for Minimising Siltation in Semi-Enclosed Docks

Authors: A. A. Purohit, A. Basu, K. A. Chavan, M. D. Kudale

Abstract:

Many estuarine harbours in the world are facing the problem of siltation in docks, channel entrances, etc. The harbours in India are not an exception and require maintenance dredging to achieve navigable depths for keeping them operable. Hence, dredging is inevitable and is a costly affair. The heavy siltation in docks in well mixed tide dominated estuaries is mainly due to settlement of cohesive sediments in suspension. As such there is a need to have a permanent solution for minimising the siltation in such docks to alter the hydrodynamic flow field responsible for siltation by constructing structures outside the dock. One of such docks on the west coast of India, wherein siltation of about 2.5-3 m/annum prevails, was considered to understand the hydrodynamic flow field responsible for siltation. The dock is situated in such a region where macro type of semi-diurnal tide (range of about 5m) prevails. In order to change the flow field responsible for siltation inside the dock, suitability of Current Deflecting Wall (CDW) outside the dock was studied, which will minimise the sediment exchange rate and siltation in the dock. The well calibrated physical tidal model was used to understand the flow field during various phases of tide for the existing dock in Mumbai harbour. At the harbour entrance where the tidal flux exchanges in/out of the dock, measurements on water level and current were made to estimate the sediment transport capacity. The distorted scaled model (1:400 (H) & 1:80 (V)) of Mumbai area was used to study the tidal flow phenomenon, wherein tides are generated by automatic tide generator. Hydraulic model studies carried out under the existing condition (without CDW) reveal that, during initial hours of flood tide, flow hugs the docks breakwater and part of flow which enters the dock forms number of eddies of varying sizes inside the basin, while remaining part of flow bypasses the entrance of dock. During ebb, flow direction reverses, and part of the flow re-enters the dock from outside and creates eddies at its entrance. These eddies do not allow water/sediment-mass to come out and result in settlement of sediments in dock both due to eddies and more retention of sediment. At latter hours, current strength outside the dock entrance reduces and allows the water-mass of dock to come out. In order to improve flow field inside the dockyard, two CDWs of length 300 m and 40 m were proposed outside the dock breakwater and inline to Pier-wall at dock entrance. Model studies reveal that, during flood, major flow gets deflected away from the entrance and no eddies are formed inside the dock, while during ebb flow does not re-enter the dock, and sediment flux immediately starts emptying it during initial hours of ebb. This reduces not only the entry of sediment in dock by about 40% but also the deposition by about 42% due to less retention. Thus, CDW is a promising solution to significantly reduce siltation in dock.

Keywords: Current deflecting wall, eddies, hydraulic model, macro tide, siltation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
133 Development of Map of Gridded Basin Flash Flood Potential Index: GBFFPI Map of QuangNam, QuangNgai, DaNang, Hue Provinces

Authors: Le Xuan Cau

Abstract:

Flash flood is occurred in short time rainfall interval: from 1 hour to 12 hours in small and medium basins. Flash floods typically have two characteristics: large water flow and big flow velocity. Flash flood is occurred at hill valley site (strip of lowland of terrain) in a catchment with large enough distribution area, steep basin slope, and heavy rainfall. The risk of flash floods is determined through Gridded Basin Flash Flood Potential Index (GBFFPI). Flash Flood Potential Index (FFPI) is determined through terrain slope flash flood index, soil erosion flash flood index, land cover flash floods index, land use flash flood index, rainfall flash flood index. Determining GBFFPI, each cell in a map can be considered as outlet of a water accumulation basin. GBFFPI of the cell is determined as basin average value of FFPI of the corresponding water accumulation basin. Based on GIS, a tool is developed to compute GBFFPI using ArcObjects SDK for .NET. The maps of GBFFPI are built in two types: GBFFPI including rainfall flash flood index (real time flash flood warning) or GBFFPI excluding rainfall flash flood index. GBFFPI Tool can be used to determine a high flash flood potential site in a large region as quick as possible. The GBFFPI is improved from conventional FFPI. The advantage of GBFFPI is that GBFFPI is taking into account the basin response (interaction of cells) and determines more true flash flood site (strip of lowland of terrain) while conventional FFPI is taking into account single cell and does not consider the interaction between cells. The GBFFPI Map of QuangNam, QuangNgai, DaNang, Hue is built and exported to Google Earth. The obtained map proves scientific basis of GBFFPI.

Keywords: ArcObjects SDK for .NET, Basin average value of FFPI, Gridded basin flash flood potential index, GBFFPI map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
132 Understanding Walkability in the Libyan Urban Space: Policies, Perceptions and Smart Design for Sustainable Tripoli

Authors: A. Abdulla Khairi Mohamed, Mohamed Gamal Abdelmonem, Gehan Selim

Abstract:

Walkability in civic and public spaces in Libyan cities is challenging due to the lack of accessibility design, informal merging into car traffic, and the general absence of adequate urban and space planning. The lack of accessible and pedestrian-friendly public spaces in Libyan cities has emerged as a major concern for the government if it is to develop smart and sustainable spaces for the 21st century. A walkable urban space has become a driver for urban development and redistribution of land use to ensure pedestrian and walkable routes between sites of living and workplaces. The characteristics of urban open space in the city centre play a main role in attracting people to walk when attending their daily needs, recreation and daily sports. There is significant gap in the understanding of perceptions, feasibility and capabilities of Libyan urban space to accommodate enhance or support the smart design of a walkable pedestrian-friendly environment that is safe and accessible to everyone. The paper aims to undertake observations of walkability and walkable space in the city of Tripoli as a benchmark for Libyan cities; assess the validity and consistency of the seven principal aspects of smart design, safety, accessibility and 51 factors that affect the walkability in open urban space in Tripoli, through the analysis of 10 local urban spaces experts (town planner, architect, transport engineer and urban designer); and explore user groups’ perceptions of accessibility in walkable spaces in Libyan cities through questionnaires. The study sampled 200 respondents in 2015-16. The results of this study are useful for urban planning, to classify the walkable urban space elements which affect to improve the level of walkability in the Libyan cities and create sustainable and liveable urban spaces.

Keywords: Walkability, sustainability, liveability, accessibility, safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
131 Mango (Mangifera indica L.) Lyophilization Using Vacuum-Induced Freezing

Authors: Natalia A. Salazar, Erika K. Méndez, Catalina Álvarez, Carlos E. Orrego

Abstract:

Lyophilization, also called freeze-drying, is an important dehydration technique mainly used for pharmaceuticals. Food industry also uses lyophilization when it is important to retain most of the nutritional quality, taste, shape and size of dried products and to extend their shelf life. Vacuum-Induced during freezing cycle (VI) has been used in order to control ice nucleation and, consequently, to reduce the time of primary drying cycle of pharmaceuticals preserving quality properties of the final product. This procedure has not been applied in freeze drying of foods. The present work aims to investigate the effect of VI on the lyophilization drying time, final moisture content, density and reconstitutional properties of mango (Mangifera indica L.) slices (MS) and mango pulp-maltodextrin dispersions (MPM) (30% concentration of total solids). Control samples were run at each freezing rate without using induced vacuum. The lyophilization endpoint was the same for all treatments (constant difference between capacitance and Pirani vacuum gauges). From the experimental results it can be concluded that at the high freezing rate (0.4°C/min) reduced the overall process time up to 30% comparing process time required for the control and VI of the lower freeze rate (0.1°C/min) without affecting the quality characteristics of the dried product, which yields a reduction in costs and energy consumption for MS and MPM freeze drying. Controls and samples treated with VI at freezing rate of 0.4°C/min in MS showed similar results in moisture and density parameters. Furthermore, results from MPM dispersion showed favorable values when VI was applied because dried product with low moisture content and low density was obtained at shorter process time compared with the control. There were not found significant differences between reconstitutional properties (rehydration for MS and solubility for MPM) of freeze dried mango resulting from controls, and VI treatments.

Keywords: Drying time, lyophilization, mango, vacuum induced freezing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
130 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm

Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou

Abstract:

Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and Weight on Bit (WOB) used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036 m3/h and -2.374 m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. The best combination of funnel viscosity, final shear force and drilling time is obtained through quantitative calculation. The minimum loss rate of lost circulation wells in Shunbei area is 10 m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.

Keywords: Drilling fluid, loss rate, main controlling factors, Unmanned Intervention Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 401
129 Environmental and Toxicological Impacts of Glyphosate with Its Formulating Adjuvant

Authors: I. Székács, Á. Fejes, S. Klátyik, E. Takács, D. Patkó, J. Pomóthy, M. Mörtl, R. Horváth, E. Madarász, B. Darvas, A. Székács

Abstract:

Environmental and toxicological characteristics of formulated pesticides may substantially differ from those of their active ingredients or other components alone. This phenomenon is demonstrated in the case of the herbicide active ingredient glyphosate. Due to its extensive application, this active ingredient was found in surface and ground water samples collected in Békés County, Hungary, in the concentration range of 0.54–0.98 ng/ml. The occurrence of glyphosate appeared to be somewhat higher at areas under intensive agriculture, industrial activities and public road services, but the compound was detected at areas under organic (ecological) farming or natural grasslands, indicating environmental mobility. Increased toxicity of the formulated herbicide product Roundup compared to that of glyphosate was observed on the indicator aquatic organism Daphnia magna Straus. Acute LC50 values of Roundup and its formulating adjuvant polyethoxylated tallowamine (POEA) exceeded 20 and 3.1 mg/ml, respectively, while that of glyphosate (as isopropyl salt) was found to be substantially lower (690-900 mg/ml) showing good agreement with literature data. Cytotoxicity of Roundup, POEA and glyphosate has been determined on the neuroectodermal cell line, NE-4C measured both by cell viability test and holographic microscopy. Acute toxicity (LC50) of Roundup, POEA and glyphosate on NE-4C cells was found to be 0.013±0.002%, 0.017±0.009% and 6.46±2.25%, respectively (in equivalents of diluted Roundup solution), corresponding to 0.022±0.003 and 53.1±18.5 mg/ml for POEA and glyphosate, respectively, indicating no statistical difference between Roundup and POEA and 2.5 orders of magnitude difference between these and glyphosate. The same order of cellular toxicity seen in average cell area has been indicated under quantitative cell visualization. The results indicate that toxicity of the formulated herbicide is caused by the formulating agent, but in some parameters toxicological synergy occurs between POEA and glyphosate.

Keywords: Glyphosate, polyethoxylated tallowamine, Roundup, combined aquatic and cellular toxicity, synergy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6364
128 Spatial Planning and Tourism Development with Sustainability Model of the Territorial Tourist with Land Use Approach

Authors: Mehrangiz Rezaee, Zabih Charrahi

Abstract:

In the last decade, with increasing tourism destinations and tourism growth, we are witnessing the widespread impacts of tourism on the economy, environment and society. Tourism and its related economy are now undergoing a transformation and as one of the key pillars of business economics, it plays a vital role in the world economy. Activities related to tourism and providing services appropriate to it in an area, like many economic sectors, require the necessary context on its origin. Given the importance of tourism industry and tourism potentials of Yazd province in Iran, it is necessary to use a proper procedure for prioritizing different areas for proper and efficient planning. One of the most important goals of planning is foresight and creating balanced development in different geographical areas. This process requires an accurate study of the areas and potential and actual talents, as well as evaluation and understanding of the relationship between the indicators affecting the development of the region. At the global and regional level, the development of tourist resorts and the proper distribution of tourism destinations are needed to counter environmental impacts and risks. The main objective of this study is the sustainable development of suitable tourism areas. Given that tourism activities in different territorial areas require operational zoning, this study deals with the evaluation of territorial tourism using concepts such as land use, fitness and sustainable development. It is essential to understand the structure of tourism development and the spatial development of tourism using land use patterns, spatial planning and sustainable development. Tourism spatial planning implements different approaches. However, the development of tourism as well as the spatial development of tourism is complex, since tourist activities can be carried out in different areas with different purposes. Multipurpose areas have great important for tourism because it determines the flow of tourism. Therefore, in this paper, by studying the development and determination of tourism suitability that is related to spatial development, it is possible to plan tourism spatial development by developing a model that describes the characteristics of tourism. The results of this research determine the suitability of multi-functional territorial tourism development in line with spatial planning of tourism.

Keywords: Land use change, spatial planning, sustainability, territorial tourist, Yazd.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1125
127 Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter

Authors: A. Alzeyadi, E. Loffill, R. Alkhaddar

Abstract:

Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1).

Keywords: Filter media, hydraulic loading rate, residence time distribution, tracer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
126 Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas

Authors: Mareli Hattingh, I. Jaco Van der Walt, Frans B. Waanders

Abstract:

A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.

Keywords: Cyclone, design, plasma, renewable energy, solid separation, waste processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
125 Physicochemical Activities of Blood Biomarkers Due to Ingestible Radon-222 in Drinking Water and Its Associated Health Consequences

Authors: I. M. Yusuff, A. M. Arogunjo, S. B. Ibikunle, O. M. Oni, P. O. Osho

Abstract:

Generally, water contamination is a serious health concern, affecting millions of people worldwide every year. Among the water contaminants, radon is a radioactive contaminant understudied and under-regulated. It produces many adverse health effects, including cancer. It is a natural gas that cannot be seen, tasted, or smelled. It develops from the radioactive decay of radium found in the rock of soil and has been considered a health hazard due to its radioactivity in nature. To examine its effects and physicochemical characteristics on the blood biomarkers due to its ingestion in drinking water, its concentrations were monitored and measured in treated and untreated water using Electronic Radon Active Detector (RAD7), while human blood samples were collected using the required laboratory tools. The blood samples were collected and examined physicochemically using semi-automated chemistry analyzer to evaluate the chemistry parameters of the blood. Statistically, results obtained were analyzed using T-test of variables at 95% confidence interval. The outcome of results revealed 112.03 Bq/m3, 561.67 Bq/m3 and 2,753.00 Bq/m3 of radon-222 concentrations in the three water samples used respectively. Demographically, chemistry parameters biomarkers of the blood determined displayed some levels of variations due to radon-222 contaminants ingested from untreated water. Also, analyzed results of blood revealed the associations between the physicochemical parameters of the blood biomarkers and volunteers’ health consequences. The consequences observed were more severed with group B volunteers than group A, due to high level of radon contaminants in borehole water consumed by group B than in well water consumed by group A. The percentages of elevated and depressed biomarkers observed differ from initial reference values and, were the dysfunction indicators. They are directly or indirectly associated to human’s state of health. Most significant biomarkers affected were; HCO3, Cl, K, Cr and Na, they are relevant biomarkers in medicine to determine human’s state of health at any point in time.

Keywords: Radioactive, radon, biomarker, ingestion, dysfunction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212
124 Coils and Antennas Fabricated with Sewing Litz Wire for Wireless Power Transfer

Authors: Hikari Ryu, Yuki Fukuda, Kento Oishi, Chiharu Igarashi, Shogo Kiryu

Abstract:

Recently, wireless power transfer has been developed in various fields. Magnetic coupling is popular for feeding power at a relatively short distance and at a lower frequency. Electro-magnetic wave coupling at a high frequency is used for long-distance power transfer. The wireless power transfer has attracted attention in e-textile fields. Rigid batteries are required for many body-worn electric systems at the present time. The technology enables such batteries to be removed from the systems. Coils with a high Q factor are required in the magnetic-coupling power transfer. Antennas with low return loss are needed for the electro-magnetic coupling. Litz wire is so flexible to fabricate coils and antennas sewn on fabric and has low resistivity. In this study, the electric characteristics of some coils and antennas fabricated with the Litz wire by using two sewing techniques are investigated. As examples, a coil and an antenna are described. Both were fabricated with 330/0.04 mm Litz wire. The coil was a planar coil with a square shape. The outer side was 150 mm, the number of turns was 15, and the pitch interval between each turn was 5 mm. The Litz wire of the coil was overstitched with a sewing machine. The coil was fabricated as a receiver coil for a magnetic coupled wireless power transfer. The Q factor was 200 at a frequency of 800 kHz. A wireless power system was constructed by using the coil. A power oscillator was used in the system. The resonant frequency of the circuit was set to 123 kHz, where the switching loss of power Field Effect Transistor (FET) was was small. The power efficiencies were 0.44-0.99, depending on the distance between the transmitter and receiver coils. As an example of an antenna with a sewing technique, a fractal pattern antenna was stitched on a 500 mm x 500 mm fabric by using a needle punch method. The pattern was the 2nd-oder Vicsec fractal. The return loss of the antenna was -28 dB at a frequency of 144 MHz.

Keywords: E-textile, flexible coils, flexible antennas, Litz wire, wireless power transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
123 Use of Hair as an Indicator of Environmental Lead Pollution: Characteristics and Seasonal Variation of Lead Pollution in Egypt

Authors: A. A. K. Abou-Arab, M. A. Abou Donia, Nevin E. Sharaf, Sherif R. Mohamed, A. K. Enab

Abstract:

Lead being a toxic heavy metal that mankind is exposed to the highest levels of this metal from environmental pollutants. A total of 180 Male scalp hair samples were collected from different environments in Greater Cairo (GC), i.e. industrial, heavy traffic and rural areas (60 samples from each) having different activities during the period of, 1/5/2010 to 1/11/2012. Hair samples were collected during five stages. Data proved that the concentration of lead in male industrial areas of Cairo ranged between 6.2847 to 19.0432 μg/g, with mean value of 12.3288 μg/g. On the other hand, lead content of hair samples of residential-traffic areas ranged between 2.8634 to 16.3311 μg/g with mean value of 9.7552 μg/g. While lead concentration on the hair of the male residents living in rural area ranged between 1.0499-9.0402μg/g with mean value of 4.7327 μg/g. The Pb concentration in scalp hair of Cairo residents of residential-traffic and rural traffic areas was observed to follow the same pattern. The pattern was that of decrease concentration of summer and its increase in winter. Then, there was a marked increase in Pb concentration of summer 2012, and this increase was significant. These were obviously seen for the residential-traffic and rural areas residents. Pb pollution in residents of industrial areas showed the same seasonal pattern, but there was marked to decrease in Pb concentration of summer 2012, and this decrease was significant. Lead pollution in residents of GC was serious. It is worth noting that the atmosphere is still contaminated by lead despite a decade of using unleaded gasoline. Strong seasonal variation in higher Pb concentration on winter than in summer was found. Major contributions to the pollution with Pb could include industry emissions, motor vehicle emissions and long transported dust from outside Cairo. More attention should be paid to the reduction of Pb content of the urban aerosol and to the Pb pollution health.

Keywords: Hair, lead, environmental exposure, seasonal variations, Egypt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
122 The Extent of Land Use Externalities in the Fringe of Jakarta Metropolitan: An Application of Spatial Panel Dynamic Land Value Model

Authors: Rahma Fitriani, Eni Sumarminingsih, Suci Astutik

Abstract:

In a fast growing region, conversion of agricultural lands which are surrounded by some new development sites will occur sooner than expected. This phenomenon has been experienced by many regions in Indonesia, especially the fringe of Jakarta (BoDeTaBek). Being Indonesia’s capital city, rapid conversion of land in this area is an unavoidable process. The land conversion expands spatially into the fringe regions, which were initially dominated by agricultural land or conservation sites. Without proper control or growth management, this activity will invite greater costs than benefits. The current land use is the use which maximizes its value. In order to maintain land for agricultural activity or conservation, some efforts are needed to keep the land value of this activity as high as possible. In this case, the knowledge regarding the functional relationship between land value and its driving forces is necessary. In a fast growing region, development externalities are the assumed dominant driving force. Land value is the product of the past decision of its use leading to its value. It is also affected by the local characteristics and the observed surrounded land use (externalities) from the previous period. The effect of each factor on land value has dynamic and spatial virtues; an empirical spatial dynamic land value model will be more useful to capture them. The model will be useful to test and to estimate the extent of land use externalities on land value in the short run as well as in the long run. It serves as a basis to formulate an effective urban growth management’s policy. This study will apply the model to the case of land value in the fringe of Jakarta Metropolitan. The model will be used further to predict the effect of externalities on land value, in the form of prediction map. For the case of Jakarta’s fringe, there is some evidence about the significance of neighborhood urban activity – negative externalities, the previous land value and local accessibility on land value. The effects are accumulated dynamically over years, but they will fully affect the land value after six years.

Keywords: Growth management, land use externalities, land value, spatial panel dynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001
121 Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.

Keywords: Welded steel plate, crack variation, three-dimensional Digital Image Correlation (DIC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603