Search results for: surface properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4545

Search results for: surface properties

1185 Optimal Space Vector Control for Permanent Magnet Synchronous Motor based on Nonrecursive Riccati Equation

Authors: Marian Gaiceanu, Emil Rosu

Abstract:

In this paper the optimal control strategy for Permanent Magnet Synchronous Motor (PMSM) based drive system is presented. The designed full optimal control is available for speed operating range up to base speed. The optimal voltage space-vector assures input energy reduction and stator loss minimization, maintaining the output energy in the same limits with the conventional PMSM electrical drive. The optimal control with three components is based on the energetically criteria and it is applicable in numerical version, being a nonrecursive solution. The simulation results confirm the increased efficiency of the optimal PMSM drive. The properties of the optimal voltage space vector are shown.

Keywords: Matlab/Simulink, optimal control, permanent magnet synchronous motor, Riccati equation, space vector PWM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
1184 Modeling Biology Inspired Reactive Agents Using X-machines

Authors: George Eleftherakis, Petros Kefalas, Anna Sotiriadou, Evangelos Kehris

Abstract:

Recent advances in both the testing and verification of software based on formal specifications of the system to be built have reached a point where the ideas can be applied in a powerful way in the design of agent-based systems. The software engineering research has highlighted a number of important issues: the importance of the type of modeling technique used; the careful design of the model to enable powerful testing techniques to be used; the automated verification of the behavioural properties of the system; the need to provide a mechanism for translating the formal models into executable software in a simple and transparent way. This paper introduces the use of the X-machine formalism as a tool for modeling biology inspired agents proposing the use of the techniques built around X-machine models for the construction of effective, and reliable agent-based software systems.

Keywords: Biology inspired agent, formal methods, x-machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
1183 Flood-Induced River Disruption: Geomorphic Imprints and Topographic Effects in Kelantan River Catchment from Kemubu to Kuala Besar, Kelantan, Malaysia

Authors: Mohamad Muqtada Ali Khan, Nor Ashikin Shaari, Donny Adriansyah Bin Nazaruddin, Hafzan Eva Bt Mansoor

Abstract:

Floods play a key role in landform evolution of an area. This process is likely to alter the topography of the earth’s surface. The present study area, Kota Bharu is very prone to floods extends from upstream of Kelantan River near Kemubu to the downstream area near Kuala Besar. These flood events which occur every year in the study area exhibit a strong bearing on river morphological set-up. In the present study, three satellite imageries of different time periods have been used to manifest the post-flood landform changes. The pre-processing of the images such as subset, geometric corrections and atmospheric corrections were carried-out using ENVI 4.5 followed by the analysis processes. Twenty sets of cross sections were plotted using software Erdas 9.2, ERDAS and ArcGis 10 for the all three images. The results show a significant change in the length of the cross section which suggest that the geomorphological processes play a key role in carving and shaping the river banks during the floods. 

Keywords: Flood Induced, Geomorphic imprints, Kelantan river, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401
1182 Visualisation and Navigation in Large Scale P2P Service Networks

Authors: H. Unger, H. Coltzau

Abstract:

In Peer-to-Peer service networks, where peers offer any kind of publicly available services or applications, intuitive navigation through all services in the network becomes more difficult as the number of services increases. In this article, a concept is discussed that enables users to intuitively browse and use large scale P2P service networks. The concept extends the idea of creating virtual 3D-environments solely based on Peer-to-Peer technologies. Aside from browsing, users shall have the possibility to emphasize services of interest using their own semantic criteria. The appearance of the virtual world shall intuitively reflect network properties that may be of interest for the user. Additionally, the concept comprises options for load- and traffic-balancing. In this article, the requirements concerning the underlying infrastructure and the graphical user interface are defined. First impressions of the appearance of future systems are presented and the next steps towards a prototypical implementation are discussed.

Keywords: Internet Operating System, Peer-To-Peer, Service Exploration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
1181 A Review on Thermal Conductivity of Bio-Based Carbon Nanotubes

Authors: Gloria A. Adewumi, Andrew C. Eloka-Eboka, Freddie L. Inambao

Abstract:

Bio-based carbon nanotubes (CNTs) have received considerable research attention due to their comparative advantages of high level stability, simplistic use, low toxicity and overall environmental friendliness. New potentials for improvement in heat transfer applications are presented due to their high aspect ratio, high thermal conductivity and special surface area. Phonons have been identified as being responsible for thermal conductivities in carbon nanotubes. Therefore, understanding the mechanism of heat conduction in CNTs involves investigating the difference between the varieties of phonon modes and knowing the kinds of phonon modes that play the dominant role. In this review, a reference to a different number of studies is made and in addition, the role of phonon relaxation rate mainly controlled by boundary scattering and three-phonon Umklapp scattering process was investigated. Results show that the phonon modes are sensitive to a number of nanotube conditions such as: diameter, length, temperature, defects and axial strain. At a low temperature (<100K) the thermal conductivity increases with increasing temperature. A small nanotube size causes phonon quantization which is evident in the thermal conductivity at low temperatures.

Keywords: Carbon nanotubes, phonons, thermal conductivity, umklapp process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
1180 Modelling of Composite Steel and Concrete Beam with the Lightweight Concrete Slab

Authors: V. Přivřelová

Abstract:

Well-designed composite steel and concrete structures highlight the good material properties and lower the deficiencies of steel and concrete, in particular they make use of high tensile strength of steel and high stiffness of concrete. The most common composite steel and concrete structure is a simply supported beam, which concrete slab transferring the slab load to a beam is connected to the steel cross-section. The aim of this paper is to find the most adequate numerical model of a simply supported composite beam with the cross-sectional and material parameters based on the results of a processed parametric study and numerical analysis. The paper also evaluates the suitability of using compact concrete with the lightweight aggregates for composite steel and concrete beams. The most adequate numerical model will be used in the resent future to compare the results of laboratory tests.

Keywords: Composite beams, high-performance concrete, highstrength steel, lightweight concrete slab, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2513
1179 Effect of Nanofibers on the Behavior of Cement Mortar and Concrete

Authors: Mostafa Osman, Ata El-kareim Shoeib

Abstract:

The main objective of this paper is study the influence of carbon nano-tubes fibers and nano silica fibers on the characteristic compressive strength and flexural strength on concrete and cement mortar. Twelve tested specimens were tested with square section its dimensions (4040 160) mm, divided into four groups. The first and second group studied the effect of carbon nano-tubes (CNTs) fibers with different percentage equal to 0.0, 0.11%, 0.22%, and 0.33% by weight of cement and effect of nano-silica (nS) fibers with different percentages equal to 0.0, 1.0%, 2.0%, and 3.0% by weight of cement on the cement mortar. The third and fourth groups studied the effect of CNTs fiber with different percentage equal to 0.0%, 0.11%, and 0.22% by weight of cement, and effect of nS fibers with different percentages were equal to 0.0%, 1.0%, and 2.0% by weight of cement on the concrete. The compressive strength and flexural strength at 7, 28, and 90 days is determined. From analysis of tested results concluded that the nano-fibers is more effective when used with cement mortar more than used with concrete because of increasing the surface area, decreasing the pore and the collection of nano-fibers. And also by adding nano-fibers the improvement of flexural strength of concrete and cement mortar is more than improvement of compressive strength.

Keywords: Carbon nano-tubes fibers, nano-silica (nS) fibers, compressive strength, flexural.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2715
1178 Effect of Heat Input on the Weld Metal Toughness of Chromium-Molybdenum Steel

Authors: M. S. Kaiser

Abstract:

An attempt has been made to determine the strength and impact properties of Cr-Mo steel weld and base materials by varying the current during manual metal arc welding. Toughness over a temperature range from -32 to 100°C of base, heat affected zone (HAZ) and weld zones at three current settings are made. It is observed that the deterioration in notch toughness at any zone with the temperature decreases. The values of notch toughness for all zones at -32°C are almost same for any current settings. The values of notch toughness at HAZ area are higher than that of weld area due to the coarsening of ferrite grain of HAZ occurs with higher heat input. From microhardness and microstructure result, it can be concluded that large inclusion content in weld deposit is the cause of lower notch toughness value.

Keywords: Chromium-Molybdenum steel, post-weld heat treatment, heat affected zone, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3638
1177 Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results

Authors: Jiri Brozovsky

Abstract:

Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew.

Keywords: Calcium silicate brick, ultrasonic pulse method, ultrasonic pulse velocity, dynamic modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
1176 Synthesis of Silk Fibroin Fiber for Indoor air Particulate Removal

Authors: Janjira Triped, Wipada Sanongraj, Bovornlak Oonkhanond, Sompop Sanongraj

Abstract:

The main objective of this research is to synthesize silk fibroin fiber for indoor air particulate removal. Silk cocoons were de-gummed using 0.5 wt % Na2CO3 alkaline solutions at 90 Ó╣ìC for 60 mins, washed with distilled water, and dried at 80 Ó╣ìC for 3 hrs in a vacuum oven. Two sets of experiment were conducted to investigate the impacts of initial particulate matter (PM) concentration and that of air flow rate on the removal efficiency. Rice bran collected from a local rice mill in Ubonratchathani province was used as indoor air contaminant in this work. The morphology and physical properties of silk fibroin (SF) fiber were measured. The SEM revealed the deposition of PM on the used fiber. The PM removal efficiencies of 72.29 ± 3.03 % and 39.33 ± 1.99 % were obtained of PM10 and PM2.5, respectively, when using the initial PM concentration at 0.040 mg/m3 and 0.020 mg/m3 of PM10 and PM2.5, respectively, with the air flow rate of 5 L/min.

Keywords: Indoor air, Particulate matter, Scanning electron microscope (SEM), Silk fibroin fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
1175 Numerical Simulation of Punching Shear of Flat Plates with Low Reinforcement

Authors: Fatema-Tuz-Zahura, Raquib Ahsan

Abstract:

Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. In the present study, a 3D finite element model of a flat plate with low reinforcement ratio and without any transverse reinforcement has been developed. Punching shear stress and the deflection data were obtained on the surface of the flat plate as well as through the thickness of the model from numerical simulations. The obtained data were compared with the experimental results. Variation of punching stress with respect to deflection as obtained from numerical results is found to be in good agreement with the experimental results; the range of variation of punching stress is within 5%. The numerical simulation shows an early and gradual onset of nonlinearity, whereas the same is late and abrupt as observed in the experimental results. The range of variation of punching stress for different slab thicknesses between experimental and numerical results is less than 15%. The developed numerical model is useful to complement available punching test series performed in the past. The results obtained from the numerical model will be helpful for designing retrofitting schemes of flat plates.

Keywords: Flat plate, finite element model, punching shear, reinforcement ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
1174 A Study on the Application of TRIZ to CAD/CAM System

Authors: Yuan L. Lai, Jian H. Chen, Jui P. Hung

Abstract:

This study created new graphical icons and operating functions in a CAD/CAM software system by analyzing icons in some of the popular systems, such as AutoCAD, AlphaCAM, Mastercam and the 1st edition of LiteCAM. These software systems all focused on geometric design and editing, thus how to transmit messages intuitively from icon itself to users is an important function of graphical icons. The primary purpose of this study is to design innovative icons and commands for new software. This study employed the TRIZ method, an innovative design method, to generate new concepts systematically. Through literature review, it then investigated and analyzed the relationship between TRIZ and idea development. Contradiction Matrix and 40 Principles were used to develop an assisting tool suitable for icon design in software development. We first gathered icon samples from the selected CAD/CAM systems. Then grouped these icons by meaningful functions, and compared useful and harmful properties. Finally, we developed new icons for new software systems in order to avoid intellectual property problem.

Keywords: Icon, TRIZ, CAD/CAM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
1173 Liquid Crystal Based Reconfigurable Reflectarray Antenna Design

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with slot embedded patch element configurations within X-band frequency range. The slots are shown to modify the surface current distribution on the patch element of reflectarray which causes the resonant patch element to provide different resonant frequencies depending on the slot dimensions. The simulated results are supported and verified by waveguide scattering parameter measurements of different reflectarray unit cells. Different rectangular slots on patch element have been fabricated and a change in resonant frequency from 10.46GHz to 8.78GHz has been demonstrated as the width of the rectangular slot is varied from 0.2W to 0.6W. The rectangular slot in the center of the patch element has also been utilized for the frequency tunable reflectarray antenna design based on K-15 Nematic LC. For the active reflectarray antenna design, a frequency tunability of 1.2% from 10GHz to 9.88GHz has been demonstrated with a dynamic phase range of 103° provided by the measured scattering parameter results. Time consumed by liquid crystals for reconfiguration, which is one of the drawback of LC based design, has also been disused in this paper.

Keywords: Liquid crystal, tunable reflectarray, frequency tunability, dynamic phase range.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
1172 Modeling of Silicon Solar Cell with Anti-Reflecting Coating

Authors: Ankita Gaur, Mouli Karmakar, Shyam

Abstract:

In this study, a silicon solar cell has been modeled and analyzed to enhance its performance by improving the optical properties using an anti-reflecting coating (ARC). The dynamic optical reflectance, transmittance along with the net transmissivity absorptivity product of each layer are assessed as per the diurnal variation of the angle of incidence using MATLAB 2019. The model is tested with various anti-reflective coatings and the performance has also been compared with uncoated cells. ARC improves the optical transmittance of the photon. Higher transmittance of ⁓96.57% with lowest reflectance of ⁓ 1.74% at 12.00 hours was obtained with MgF2 coated silicon cells. The electrical efficiency of the configured solar cell was evaluated for a composite climate of New Delhi, India, for all weather conditions. The annual electricity generation for anti-reflective coated and uncoated crystalline silicon PV Module was observed to be 103.14 KWh and 99.51 KWh, respectively.

Keywords: Anti-reflecting coating, electrical efficiency, reflectance, solar cell, transmittance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 511
1171 Effect of Non-Newtonian Behavior of Oil Phase on Oil-Water Stratified Flow in a Horizontal Channel

Authors: Satish Kumar Dewangan, Santosh Kumar Senapati

Abstract:

The present work focuses on the investigation of the effect of non-Newtonian behavior on the oil-water stratified flow in a horizontal channel using ANSYS Fluent. Coupled level set and volume of fluid (CLSVOF) has been used to capture the evolving interface assuming unsteady, coaxial flow with constant fluid properties. The diametric variation of oil volume fraction, mixture velocity, total pressure and pressure gradient has been studied. Non-Newtonian behavior of oil has been represented by the power law model in order to investigate the effect of flow behavior index. Stratified flow pattern tends to assume dispersed flow pattern with the change in the behavior of oil to non-Newtonian. The pressure gradient is found to be very much sensitive to the flow behavior index. The findings could be useful in designing the transportation pipe line in petroleum industries.

Keywords: Oil-water stratified flow, horizontal channel, CLSVOF, non–Newtonian behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143
1170 Cr Induced Magnetization in Zinc-Blende ZnO Based Diluted Magnetic Semiconductors

Authors: Bakhtiar Ul Haq, R. Ahmed, A. Shaari, Mazmira Binti Mohamed, Nisar Ali

Abstract:

The capability of exploiting the electronic charge and spin properties simultaneously in a single material has made diluted magnetic semiconductors (DMS) remarkable in the field of spintronics. We report the designing of DMS based on zinc-blend ZnO doped with Cr impurity. The full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method in density functional theory (DFT) has been adapted to carry out these investigations. For treatment of exchange and correlation energy, generalized gradient approximations have been used. Introducing Cr atoms in the matrix of ZnO has induced strong magnetic moment with ferromagnetic ordering at stable ground state. Cr:ZnO was found to favor the short range magnetic interaction that reflect tendency of Cr clustering. The electronic structure of ZnO is strongly influenced in the presence of Cr impurity atoms where impurity bands appear in the band gap.

Keywords: ZnO, Density functional theory, Diluted magnetic semiconductors, Ferromagnetic materials, FP-L(APW+lo).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
1169 Separation Characteristics of the Hollow Fiber Membrane Module Using Water Mixed with Small Sized Bubbles Composed of Synthesized Exhalations

Authors: Pil Woo Heo, Hyunse Kim

Abstract:

Fish can breathe freely under water using dissolved oxygen and survive for a long time without going out of the water. A human can also survive under water using dissolved oxygens, if properly used. He needs more dissolved oxygens than the fish, so efficient separation device is required. Since the amount of oxygen contained in water is weak, a person needs a lot of surface area to breathe in water, which leads to a large-sized device. It can be applied to various fields if it is developed as a device which is advantageous to carry in small size. In this paper, we have carried out a study on the effective use of exhalations and proposed the separation characteristics of the gas containing dissolved oxygen in the state of mixed gas considering the components of exhalation. The system was configured to have a fine bubble when the gas mixture injected into the front end of the separator. While the fluid containing the fine bubbles was supplied to the separator, the dissolved gas contained in water was separated using a vacuum pump. The gas separation amount of the separating apparatus with respect to the supplied mixed gas was measured. The amounts of separation of dissolved gas were increased as the amounts of mixed gas supplied were increased.

Keywords: Small sized bubbles, synthesized exhalations, separation, hollow fiber module.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682
1168 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles

Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego

Abstract:

Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.

Keywords: Aluminum matrix composites, Intermetallics Spark plasma sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
1167 Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance

Authors: Ahmed A.D. Sarhan, Lim Siew Fen, Mum Wai Yip, M. Sayuti

Abstract:

Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.

Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2734
1166 Application of Turbulence Modeling in Computational Fluid Dynamics for Airfoil Simulations

Authors: Mohammed Bilal

Abstract:

The precise prediction of aerodynamic behavior is necessary for the design and optimization of airfoils for a variety of applications. Turbulence, a phenomenon of complex and irregular flow, significantly affects the aerodynamic properties of airfoils. Therefore, turbulence modeling is essential for accurately predicting the behavior of airfoils in simulations. This study investigates five commonly employed turbulence models: Spalart-Allmaras (SA) model, k-epsilon model, k-omega model, Reynolds Stress Model (RSM), and Large Eddy Simulation (LES) model. The paper includes a comparison of the models' precision, computational expense, and applicability to various flow conditions. The strengths and weaknesses of each model are highlighted, allowing researchers and engineers to make informed decisions regarding simulations of specific airfoils. Unquestionably, the continuous development of turbulence modeling will contribute to further improvements in airfoil design and optimization, which will be advantageous to numerous industries.

Keywords: Computational fluid dynamics, airfoil, turbulence, aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 263
1165 Soil Moisture Regulation in Irrigated Agriculture

Authors: I. Kruashvili, I. Inashvili, K. Bziava, M. Lomishvili

Abstract:

Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received.

Keywords: Seepage, soil, velocity, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
1164 Ray Tracing Technique based 60 GHz Band Propagation Modelling and Influence of People Shadowing

Authors: A. Khafaji, R. Saadane, J. El Abbadi, M. Belkasmi

Abstract:

The main objectif of this paper is to present a tool that we have developed subject to characterize and modelling indoor radio channel propagation at millimetric wave. The tool is based on the ray tracing technique (RTT). As, in realistic environment we cannot neglect the significant impact of Human Body Shadowing and other objects in motion on indoor 60 GHz propagation channel. Hence, our proposed model allows a simulation of propagation in a dynamic indoor environment. First, we describe a model of human body. Second, RTT with this model is used to simulate the propagation of millimeter waves in the presence of persons in motion. Results of the simulation show that this tool gives results in agreement with those reported in the literature. Specially, the effects of people motion on temporal channel properties.

Keywords: Simulation. 60 GHz band, Ray Tracing Technique, Indoor channel, Propagation, Human Body Model, Level crossing rate,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507
1163 Operational Modal Analysis Implementation on a Hybrid Composite Plate

Authors: Z. A. C. Saffry, D. L. Majid, N. H. M. Haidzir

Abstract:

In aerospace applications, interactions of airflow with aircraft structures can result in undesirable structural deformations. This structural deformation in turn, can be predicted if the natural modes of the structure are known. This can be achieved through conventional modal testing that requires a known excitation force in order to extract these dynamic properties. This technique can be experimentally complex because of the need for artificial excitation and it is also does not represent actual operational condition. The current work presents part of research work that address the practical implementation of operational modal analysis (OMA) applied to a cantilevered hybrid composite plate employing single contactless sensing system via laser vibrometer. OMA technique extracts the modal parameters based only on the measurements of the dynamic response. The OMA results were verified with impact hammer modal testing and good agreement was obtained.

Keywords: Hybrid Kevlar composite, Laser Vibrometer, modal parameters, Operational Modal Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
1162 Verification of Protocol Design using UML - SMV

Authors: Prashanth C.M., K. Chandrashekar Shet

Abstract:

In recent past, the Unified Modeling Language (UML) has become the de facto industry standard for object-oriented modeling of the software systems. The syntax and semantics rich UML has encouraged industry to develop several supporting tools including those capable of generating deployable product (code) from the UML models. As a consequence, ensuring the correctness of the model/design has become challenging and extremely important task. In this paper, we present an approach for automatic verification of protocol model/design. As a case study, Session Initiation Protocol (SIP) design is verified for the property, “the CALLER will not converse with the CALLEE before the connection is established between them ". The SIP is modeled using UML statechart diagrams and the desired properties are expressed in temporal logic. Our prototype verifier “UML-SMV" is used to carry out the verification. We subjected an erroneous SIP model to the UML-SMV, the verifier could successfully detect the error (in 76.26ms) and generate the error trace.

Keywords: Unified Modeling Language, Statechart, Verification, Protocol Design, Model Checking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
1161 Temperature Effect on the Solid-State Synthesis of Dehydrated Zinc Borates

Authors: N. Tugrul, N. Baran Acarali, A. S. Kipcak, E. Moroydor Derun, S. Piskin

Abstract:

Turkey has 72 % of total world boron reserves on the basis of B2O3.Borates that is a refined form of boron minerals have a wide range of applications. Zinc borates can be used as multifunctional synergistic additives. The most important properties are low solubility in water and high dehydration temperature. Zinc borates dehydrate above 290°C and anhydrous zinc borate has thermal resistance about 400°C. Zinc borates can be synthesized using several methods such as hydrothermal and solid-state processes. In this study, the solid-state method was applied between 500 and 800°C using the starting materials of ZnO and H3BO3 with 1:4 mole ratio. The reaction time was determined as 4 hours after some preliminary experiments. After the synthesis, the crystal structure and the morphology of the products were examined by XRay Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman Spectrometer. As a result the form of ZnB4O7 was synthesized with the highest crystal score at 800°C.

Keywords: Raman, solid-state method, zinc borate, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
1160 Production of Polyurethane Foams from Bark Wastes

Authors: Luísa P. Cruz-Lopes, Liliana Rodrigues, Idalina Domingos, José Ferreira, Luís Teixeira de Lemos, Bruno Esteves

Abstract:

Currently, the polyurethanes industry is dependent on fossil resources to obtain their basic raw materials (polyols and isocyanate), as these are obtained from petroleum products. The aim of this work was to use biopolyols from liquefied Pseudotsuga (Pseudotsuga menziesii) and Turkey oak (Quercus cerris) barks for the production of polyurethane foams and optimize the process. Liquefaction was done with glycerol catalyzed by KOH. Foams were produced following different formulations and using biopolyols from both barks. Subsequently, the foams were characterized according to their mechanical properties and the reaction of the foam formation was monitored by FTIR-ATR. The results show that it is possible to produce polyurethane foams using bio-based polyols and the liquefaction conditions are very important because they influence the characteristics of biopolyols and, consequently the characteristics of the foams. However, the process has to be further optimized so that it can obtain better quality foams.

Keywords: Bio-based polyol, mechanical tests, polyurethane foam, Pseudotsuga bark, renewable resources, Turkey oak bark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
1159 A Collusion-Resistant Distributed Signature Delegation Based on Anonymous Mobile Agent

Authors: Omaima Bamasak

Abstract:

This paper presents a novel method that allows an agent host to delegate its signing power to an anonymous mobile agent in such away that the mobile agent does not reveal any information about its host-s identity and, at the same time, can be authenticated by the service host, hence, ensuring fairness of service provision. The solution introduces a verification server to verify the signature generated by the mobile agent in such a way that even if colluding with the service host, both parties will not get more information than what they already have. The solution incorporates three methods: Agent Signature Key Generation method, Agent Signature Generation method, Agent Signature Verification method. The most notable feature of the solution is that, in addition to allowing secure and anonymous signature delegation, it enables tracking of malicious mobile agents when a service host is attacked. The security properties of the proposed solution are analyzed, and the solution is compared with the most related work.

Keywords: Anonymous signature delegation, collusion resistance, e-commerce fairness, mobile agent security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
1158 An Analysis of New Service Interchange Designs

Authors: Joseph E. Hummer

Abstract:

An efficient freeway system will be essential to the development of Africa, and interchanges are a key to that efficiency. Around the world, many interchanges between freeways and surface streets, called service interchanges, are of the diamond configuration, and interchanges using roundabouts or loop ramps are also popular. However, many diamond interchanges have serious operational problems, interchanges with roundabouts fail at high demand levels, and loops use lots of expensive land. Newer service interchange designs provide other options. The most popular new interchange design in the US at the moment is the double crossover diamond (DCD), also known as the diverging diamond. The DCD has enormous potential, but also has several significant limitations. The objectives of this paper are to review new service interchange options and to highlight some of the main features of those alternatives. The paper tests four conventional and seven unconventional designs using seven measures related to efficiency, cost, and safety. The results show that there is no superior design in all measures investigated. The DCD is better than most designs tested on most measures examined. However, the DCD was only superior to all other designs for bridge width. The DCD performed relatively poorly for capacity and for serving pedestrians. Based on the results, African freeway designers are encouraged to investigate the full range of alternatives that could work at the spot of interest. Diamonds and DCDs have their niches, but some of the other designs investigated could be optimum at some spots.

Keywords: Alternative, design, diverging diamond, freeway, interchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
1157 Low-Cost Eco-Friendly Building Material: A Case Study in Ethiopia

Authors: W. Z. Taffese

Abstract:

This work presents a low-cost and eco-friendly building material named Agrostone panel. Africa-s urban population is growing at an annual rate of 2.8% and 62% of its population will live in urban areas by 2050. As a consequence, many of the least urbanized and least developed African countries- will face serious challenges in providing affordable housing to the urban dwellers. Since the cost of building materials accounts for the largest proportion of the overall construction cost, innovating low-cost building material is vital. Agrostone panel is used in housing projects in Ethiopia. It uses raw materials of agricultural/industrial wastes and/or natural minerals as a filler, magnesium-based chemicals as a binder and fiberglass as reinforcement. Agrostone panel reduces the cost of wall construction by 50% compared with the conventional building materials. The pros and cons of Agrostone panel as well as the use of other waste materials as a raw material to make the panel more sustainable, low-cost and better properties are discussed.

Keywords: Agrostone Panel, Low-cost and sustainable Building Materials, Agro-waste for construction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9786
1156 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System

Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta

Abstract:

This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also, overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate, which minimize the total, incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality, which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.

Keywords: Deterioration, simulation, subcontracting, production planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893