Search results for: Traffic Signal Timing Optimization.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3595

Search results for: Traffic Signal Timing Optimization.

295 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition (HAR) modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view Football datasets. Our HAR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH Multi-view Football datasets, respectively.

Keywords: Computer vision, human motion analysis, random forest, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39
294 Study on the Optimization of Completely Batch Water-using Network with Multiple Contaminants Considering Flow Change

Authors: Jian Du, Shui Hong Hong, Lu Meng, Qing Wei Meng

Abstract:

This work addresses the problem of optimizing completely batch water-using network with multiple contaminants where the flow change caused by mass transfer is taken into consideration for the first time. A mathematical technique for optimizing water-using network is proposed based on source-tank-sink superstructure. The task is to obtain the freshwater usage, recycle assignments among water-using units, wastewater discharge and a steady water-using network configuration by following steps. Firstly, operating sequences of water-using units are determined by time constraints. Next, superstructure is simplified by eliminating the reuse and recycle from water-using units with maximum concentration of key contaminants. Then, the non-linear programming model is solved by GAMS (General Algebra Model System) for minimum freshwater usage, maximum water recycle and minimum wastewater discharge. Finally, numbers of operating periods are calculated to acquire the steady network configuration. A case study is solved to illustrate the applicability of the proposed approach.

Keywords: Completely batch process, flow change, multiple contaminants, water-using network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
293 Study on the Derivatization Process Using N-O-bis-(trimethylsilyl)-trifluoroacetamide,N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide, Trimethylsilydiazomethane for the Determination of Fecal Sterols by Gas Chromatography-Mass Spectrometry

Authors: Jingming Wu, Ruikang Hu, Junqi Yue, Zhaoguang Yang, Lifeng Zhang

Abstract:

Fecal sterol has been proposed as a chemical indicator of human fecal pollution even when fecal coliform populations have diminished due to water chlorination or toxic effects of industrial effluents. This paper describes an improved derivatization procedure for simultaneous determination of four fecal sterols including coprostanol, epicholestanol, cholesterol and cholestanol using gas chromatography-mass spectrometry (GC-MS), via optimization study on silylation procedures using N-O-bis (trimethylsilyl)-trifluoroacetamide (BSTFA), and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA), which lead to the formation of trimethylsilyl (TMS) and tert-butyldimethylsilyl (TBS) derivatives, respectively. Two derivatization processes of injection-port derivatization and water bath derivatization (60 oC, 1h) were inspected and compared. Furthermore, the methylation procedure at 25 oC for 2h with trimethylsilydiazomethane (TMSD) for fecal sterols analysis was also studied. It was found that most of TMS derivatives demonstrated the highest sensitivities, followed by methylated derivatives. For BSTFA or MTBSTFA derivatization processes, the simple injection-port derivatization process could achieve the same efficiency as that in the tedious water bath derivatization procedure.

Keywords: Fecal Sterols, Methylation, Silylation, BSTFA, MTBSTFA, TMSD, GC-MS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3197
292 Solving a New Mixed-Model Assembly LineSequencing Problem in a MTO Environment

Authors: N. Manavizadeh, M. Hosseini, M. Rabbani

Abstract:

In the last decades to supply the various and different demands of clients, a lot of manufacturers trend to use the mixedmodel assembly line (MMAL) in their production lines, since this policy make possible to assemble various and different models of the equivalent goods on the same line with the MTO approach. In this article, we determine the sequence of (MMAL) line, with applying the kitting approach and planning of rest time for general workers to reduce the wastages, increase the workers effectiveness and apply the sector of lean production approach. This Multi-objective sequencing problem solved in small size with GAMS22.2 and PSO meta heuristic in 10 test problems and compare their results together and conclude that their results are very similar together, next we determine the important factors in computing the cost, which improving them cost reduced. Since this problem, is NPhard in large size, we use the particle swarm optimization (PSO) meta-heuristic for solving it. In large size we define some test problems to survey it-s performance and determine the important factors in calculating the cost, that by change or improved them production in minimum cost will be possible.

Keywords: Mixed-Model Assembly Line, particle swarmoptimization, Multi-objective sequencing problem, MTO system, kitto-assembly, rest time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
291 In Cognitive Radio the Analysis of Bit-Error- Rate (BER) by using PSO Algorithm

Authors: Shrikrishan Yadav, Akhilesh Saini, Krishna Chandra Roy

Abstract:

The electromagnetic spectrum is a natural resource and hence well-organized usage of the limited natural resources is the necessities for better communication. The present static frequency allocation schemes cannot accommodate demands of the rapidly increasing number of higher data rate services. Therefore, dynamic usage of the spectrum must be distinguished from the static usage to increase the availability of frequency spectrum. Cognitive radio is not a single piece of apparatus but it is a technology that can incorporate components spread across a network. It offers great promise for improving system efficiency, spectrum utilization, more effective applications, reduction in interference and reduced complexity of usage for users. Cognitive radio is aware of its environmental, internal state, and location, and autonomously adjusts its operations to achieve designed objectives. It first senses its spectral environment over a wide frequency band, and then adapts the parameters to maximize spectrum efficiency with high performance. This paper only focuses on the analysis of Bit-Error-Rate in cognitive radio by using Particle Swarm Optimization Algorithm. It is theoretically as well as practically analyzed and interpreted in the sense of advantages and drawbacks and how BER affects the efficiency and performance of the communication system.

Keywords: BER, Cognitive Radio, Environmental Parameters, PSO, Radio spectrum, Transmission Parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
290 Application of Medium High Hydrostatic Pressure in Preserving Textural Quality and Safety of Pineapple Compote

Authors: Nazim Uddin, Yohiko Nakaura, Kazutaka Yamamoto

Abstract:

Compote (fruit in syrup) of pineapple (Ananas comosus L. Merrill) is expected to have a high market potential as one of convenient ready-to-eat (RTE) foods worldwide. High hydrostatic pressure (HHP) in combination with low temperature (LT) was applied to the processing of pineapple compote as well as medium HHP (MHHP) in combination with medium-high temperature (MHT) since both processes can enhance liquid impregnation and inactivate microbes. MHHP+MHT (55 or 65 °C) process, as well as the HHP+LT process, has successfully inactivated the microbes in the compote to a non-detectable level. Although the compotes processed by MHHP+MHT or HHP+LT have lost the fresh texture as in a similar manner as those processed solely by heat, it was indicated that the texture degradations by heat were suppressed under MHHP. Degassing process reduced the hardness, while calcium (Ca) contributed to be retained hardness in MHT and MHHP+MHT processes. Electrical impedance measurement supported the damage due to degassing and heat. The color, Brix, and appearance were not affected by the processing methods significantly. MHHP+MHT and HHP+LT processes may be applicable to produce high-quality, safe RTE pineapple compotes. Further studies on the optimization of packaging and storage condition will be indispensable for commercialization.

Keywords: Compote of pineapple, ready-to-eat, medium high hydrostatic pressure, postharvest loss, and texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807
289 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.

Keywords: Model predictive control, unscented Kalman filter, nonlinear systems, implicit systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
288 SFE as a Superior Technique for Extraction of Eugenol-Rich Fraction from Cinnamomum tamala Nees (Bay Leaf) - Process Analysis and Phytochemical Characterization

Authors: Sudip Ghosh, Dipanwita Roy, Dipan Chatterjee, Paramita Bhattacharjee, Satadal Das

Abstract:

Highest yield of eugenol-rich fractions from Cinnamomum tamala (bay leaf) leaves were obtained by supercritical carbon dioxide (SC-CO2), compared to hydro-distillation, organic solvents, liquid CO2 and subcritical CO2 extractions. Optimization of SC-CO2 extraction parameters was carried out to obtain an extract with maximum eugenol content. This was achieved using a sample size of 10g at 55°C, 512 bar after 60min at a flow rate of 25.0 cm3/sof gaseous CO2. This extract has the best combination of phytochemical properties such as phenolic content (1.77mg gallic acid/g dry bay leaf), reducing power (0.80mg BHT/g dry bay leaf), antioxidant activity (IC50 of 0.20mg/ml) and anti-inflammatory potency (IC50 of 1.89mg/ml). Identification of compounds in this extract was performed by GC-MS analysis and its antimicrobial potency was also evaluated. The MIC values against E. coli, P. aeruginosa and S. aureus were 0.5, 0.25 and 0.5mg/ml, respectively

Keywords: Antimicrobial potency, Cinnamomum tamala, eugenol, supercritical carbon dioxide extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3630
287 LFC Design of a Deregulated Power System with TCPS Using PSO

Authors: H. Shayeghi, H.A. Shayanfar, A. Jalili

Abstract:

In the LFC problem, the interconnections among some areas are the input of disturbances, and therefore, it is important to suppress the disturbances by the coordination of governor systems. In contrast, tie-line power flow control by TCPS located between two areas makes it possible to stabilize the system frequency oscillations positively through interconnection, which is also expected to provide a new ancillary service for the further power systems. Thus, a control strategy using controlling the phase angle of TCPS is proposed for provide active control facility of system frequency in this paper. Also, the optimum adjustment of PID controller's parameters in a robust way under bilateral contracted scenario following the large step load demands and disturbances with and without TCPS are investigated by Particle Swarm Optimization (PSO), that has a strong ability to find the most optimistic results. This newly developed control strategy combines the advantage of PSO and TCPS and has simple stricture that is easy to implement and tune. To demonstrate the effectiveness of the proposed control strategy a three-area restructured power system is considered as a test system under different operating conditions and system nonlinearities. Analysis reveals that the TCPS is quite capable of suppressing the frequency and tie-line power oscillations effectively as compared to that obtained without TCPS for a wide range of plant parameter changes, area load demands and disturbances even in the presence of system nonlinearities.

Keywords: LFC, TCPS, Dregulated Power System, PowerSystem Control, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
286 Numerical Investigation of the Evaporation and Mixing of UWS in a Diesel Exhaust Pipe

Authors: Tae Hyun Ahn, Gyo Woo Lee, Man Young Kim

Abstract:

Because of high thermal efficiency and low CO2 emission, diesel engines are being used widely in many industrial fields although it makes many PM and NOx which give both human health and environment a negative effect. NOx regulations for diesel engines, however, are being strengthened and it is impossible to meet the emission standard without NOx reduction devices such as SCR (Selective Catalytic Reduction), LNC (Lean NOx Catalyst), and LNT (Lean NOx Trap). Among the NOx reduction devices, urea-SCR system is known as the most stable and efficient method to solve the problem of NOx emission. But this device has some issues associated with the ammonia slip phenomenon which is occurred by shortage of evaporation and thermolysis time, and that makes it difficult to achieve uniform distribution of the injected urea in front of monolith. Therefore, this study has focused on the mixing enhancement between urea and exhaust gases to enhance the efficiency of the SCR catalyst equipped in catalytic muffler by changing inlet gas temperature and spray conditions to improve the spray uniformity of the urea water solution. Finally, it can be found that various parameters such as inlet gas temperature and injector and injection angles significantly affect the evaporation and mixing of the urea water solution with exhaust gases, and therefore, optimization of these parameters are required.

Keywords: Evaporation, Injection, Selective Catalytic Reduction (SCR), Thermolysis, UWS (Urea-Water-Solution).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2890
285 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery

Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori

Abstract:

The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.

Keywords: Autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
284 Skin Lesion Segmentation Using Color Channel Optimization and Clustering-based Histogram Thresholding

Authors: Rahil Garnavi, Mohammad Aldeen, M. Emre Celebi, Alauddin Bhuiyan, Constantinos Dolianitis, George Varigos

Abstract:

Automatic segmentation of skin lesions is the first step towards the automated analysis of malignant melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most effective color space for melanoma application. This paper proposes an automatic segmentation algorithm based on color space analysis and clustering-based histogram thresholding, a process which is able to determine the optimal color channel for detecting the borders in dermoscopy images. The algorithm is tested on a set of 30 high resolution dermoscopy images. A comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm, applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. By performing ROC analysis and ranking the metrics, it is demonstrated that the best results are obtained with the X and XoYoR color channels, resulting in an accuracy of approximately 97%. The proposed method is also compared with two state-of-theart skin lesion segmentation methods.

Keywords: Border detection, Color space analysis, Dermoscopy, Histogram thresholding, Melanoma, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
283 Classifier Based Text Mining for Neural Network

Authors: M. Govindarajan, R. M. Chandrasekaran

Abstract:

Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.

Keywords: Back propagation, classification accuracy, textmining, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218
282 A New Intelligent, Dynamic and Real Time Management System of Sewerage

Authors: R. Tlili Yaakoubi, H. Nakouri, O. Blanpain, S. Lallahem

Abstract:

The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of this project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 19 to 100 %. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 40 % of total volume rejected to the natural environment and of 65 % in the number of discharges.

Keywords: Automation, optimization, paradigm, RTC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
281 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method

Authors: Atilla Bayram

Abstract:

This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.

Keywords: Computed force control method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
280 Correlation and Prediction of Biodiesel Density

Authors: Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Rui J. Moreira, Jaime B. Santos

Abstract:

The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg⋅m- 3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg·m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.

Keywords: Biodiesel, Correlation, Density, Equation of state, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3512
279 New Wavelet Indices to Assess Muscle Fatigue during Dynamic Contractions

Authors: González-Izal M., Rodríguez-Carreño I, Mallor-Giménez F, Malanda A, Izquierdo M

Abstract:

The purpose of this study was to evaluate and compare new indices based on the discrete wavelet transform with another spectral parameters proposed in the literature as mean average voltage, median frequency and ratios between spectral moments applied to estimate acute exercise-induced changes in power output, i.e., to assess peripheral muscle fatigue during a dynamic fatiguing protocol. 15 trained subjects performed 5 sets consisting of 10 leg press, with 2 minutes rest between sets. Surface electromyography was recorded from vastus medialis (VM) muscle. Several surface electromyographic parameters were compared to detect peripheral muscle fatigue. These were: mean average voltage (MAV), median spectral frequency (Fmed), Dimitrov spectral index of muscle fatigue (FInsm5), as well as other five parameters obtained from the discrete wavelet transform (DWT) as ratios between different scales. The new wavelet indices achieved the best results in Pearson correlation coefficients with power output changes during acute dynamic contractions. Their regressions were significantly different from MAV and Fmed. On the other hand, they showed the highest robustness in presence of additive white gaussian noise for different signal to noise ratios (SNRs). Therefore, peripheral impairments assessed by sEMG wavelet indices may be a relevant factor involved in the loss of power output after dynamic high-loading fatiguing task.

Keywords: Median Frequency, EMG, wavelet transform, muscle fatigue

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
278 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller

Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou

Abstract:

This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.

Keywords: Wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
277 Improving the Shunt Active Power Filter Performance Using Synchronous Reference Frame PI Based Controller with Anti-Windup Scheme

Authors: Consalva J. Msigwa, Beda J. Kundy, Bakari M. M. Mwinyiwiwa

Abstract:

In this paper the reference current for Voltage Source Converter (VSC) of the Shunt Active Power Filter (SAPF) is generated using Synchronous Reference Frame method, incorporating the PI controller with anti-windup scheme. The proposed method improves the harmonic filtering by compensating the winding up phenomenon caused by the integral term of the PI controller. Using Reference Frame Transformation, the current is transformed from om a - b - c stationery frame to rotating 0 - d - q frame. Using the PI controller, the current in the 0 - d - q frame is controlled to get the desired reference signal. A controller with integral action combined with an actuator that becomes saturated can give some undesirable effects. If the control error is so large that the integrator saturates the actuator, the feedback path becomes ineffective because the actuator will remain saturated even if the process output changes. The integrator being an unstable system may then integrate to a very large value, the phenomenon known as integrator windup. Implementing the integrator anti-windup circuit turns off the integrator action when the actuator saturates, hence improving the performance of the SAPF and dynamically compensating harmonics in the power network. In this paper the system performance is examined with Shunt Active Power Filter simulation model.

Keywords: Phase Locked Loop (PLL), Voltage SourceConverter (VSC), Shunt Active Power Filter (SAPF), PI, Pulse WidthModulation (PWM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
276 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: Artificial Intelligence, machine learning, deep learning, convolutional neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
275 Recommended Practice for Experimental Evaluation of the Seepage Sensitivity Damage of Coalbed Methane Reservoirs

Authors: Hao Liu, Lihui Zheng, Chinedu J. Okere, Chao Wang, Xiangchun Wang, Peng Zhang

Abstract:

The coalbed methane (CBM) extraction industry (an unconventional energy source) has not established guidelines for experimental evaluation of sensitivity damage for coal samples. The existing experimental process of previous researches mainly followed the industry standard for conventional oil and gas reservoirs (CIS). However, the existing evaluation method ignores certain critical differences between CBM reservoirs and conventional reservoirs, which could inevitably result in an inaccurate evaluation of sensitivity damage and, eventually, poor decisions regarding the formulation of formation damage prevention measures. In this study, we propose improved experimental guidelines for evaluating seepage sensitivity damage of CBM reservoirs by leveraging on the shortcomings of the existing methods. The proposed method was established via a theoretical analysis of the main drawbacks of the existing methods and validated through comparative experiments. The results show that the proposed evaluation technique provided reliable experimental results that can better reflect actual reservoir conditions and correctly guide the future development of CBM reservoirs. This study is pioneering the research on the optimization of experimental parameters for efficient exploration and development of CBM reservoirs.

Keywords: Coalbed methane, formation damage, permeability, unconventional energy source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 386
274 Image Transmission via Iterative Cellular-Turbo System

Authors: Ersin Gose, Kenan Buyukatak, Onur Osman, Osman N. Ucan

Abstract:

To compress, improve bit error performance and also enhance 2D images, a new scheme, called Iterative Cellular-Turbo System (IC-TS) is introduced. In IC-TS, the original image is partitioned into 2N quantization levels, where N is denoted as bit planes. Then each of the N-bit-plane is coded by Turbo encoder and transmitted over Additive White Gaussian Noise (AWGN) channel. At the receiver side, bit-planes are re-assembled taking into consideration of neighborhood relationship of pixels in 2-D images. Each of the noisy bit-plane values of the image is evaluated iteratively using IC-TS structure, which is composed of equalization block; Iterative Cellular Image Processing Algorithm (ICIPA) and Turbo decoder. In IC-TS, there is an iterative feedback link between ICIPA and Turbo decoder. ICIPA uses mean and standard deviation of estimated values of each pixel neighborhood. It has extra-ordinary satisfactory results of both Bit Error Rate (BER) and image enhancement performance for less than -1 dB Signal-to-Noise Ratio (SNR) values, compared to traditional turbo coding scheme and 2-D filtering, applied separately. Also, compression can be achieved by using IC-TS systems. In compression, less memory storage is used and data rate is increased up to N-1 times by simply choosing any number of bit slices, sacrificing resolution. Hence, it is concluded that IC-TS system will be a compromising approach in 2-D image transmission, recovery of noisy signals and image compression.

Keywords: Iterative Cellular Image Processing Algorithm (ICIPA), Turbo Coding, Iterative Cellular Turbo System (IC-TS), Image Compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
273 Numerical Simulation of Wall Treatment Effects on the Micro-Scale Combustion

Authors: R. Kamali, A. R. Binesh, S. Hossainpour

Abstract:

To understand working features of a micro combustor, a computer code has been developed to study combustion of hydrogen–air mixture in a series of chambers with same shape aspect ratio but various dimensions from millimeter to micrometer level. The prepared algorithm and the computer code are capable of modeling mixture effects in different fluid flows including chemical reactions, viscous and mass diffusion effects. The effect of various heat transfer conditions at chamber wall, e.g. adiabatic wall, with heat loss and heat conduction within the wall, on the combustion is analyzed. These thermal conditions have strong effects on the combustion especially when the chamber dimension goes smaller and the ratio of surface area to volume becomes larger. Both factors, such as larger heat loss through the chamber wall and smaller chamber dimension size, may lead to the thermal quenching of micro-scale combustion. Through such systematic numerical analysis, a proper operation space for the micro-combustor is suggested, which may be used as the guideline for microcombustor design. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the micro-combustor design, optimization and performance analysis.

Keywords: Numerical simulation, Micro-combustion, MEMS, CFD, Chemical reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
272 Entropy Based Spatial Design: A Genetic Algorithm Approach (Case Study)

Authors: Abbas Siefi, Mohammad Javad Karimifar

Abstract:

We study the spatial design of experiment and we want to select a most informative subset, having prespecified size, from a set of correlated random variables. The problem arises in many applied domains, such as meteorology, environmental statistics, and statistical geology. In these applications, observations can be collected at different locations and possibly at different times. In spatial design, when the design region and the set of interest are discrete then the covariance matrix completely describe any objective function and our goal is to choose a feasible design that minimizes the resulting uncertainty. The problem is recast as that of maximizing the determinant of the covariance matrix of the chosen subset. This problem is NP-hard. For using these designs in computer experiments, in many cases, the design space is very large and it's not possible to calculate the exact optimal solution. Heuristic optimization methods can discover efficient experiment designs in situations where traditional designs cannot be applied, exchange methods are ineffective and exact solution not possible. We developed a GA algorithm to take advantage of the exploratory power of this algorithm. The successful application of this method is demonstrated in large design space. We consider a real case of design of experiment. In our problem, design space is very large and for solving the problem, we used proposed GA algorithm.

Keywords: Spatial design of experiments, maximum entropy sampling, computer experiments, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
271 A method for Music Classification Based On Perceived Mood Detection for Indian Bollywood Music

Authors: Vallabha Hampiholi

Abstract:

A lot of research has been done in the past decade in the field of audio content analysis for extracting various information from audio signal. One such significant information is the "perceived mood" or the "emotions" related to a music or audio clip. This information is extremely useful in applications like creating or adapting the play-list based on the mood of the listener. This information could also be helpful in better classification of the music database. In this paper we have presented a method to classify music not just based on the meta-data of the audio clip but also include the "mood" factor to help improve the music classification. We propose an automated and efficient way of classifying music samples based on the mood detection from the audio data. We in particular try to classify the music based on mood for Indian bollywood music. The proposed method tries to address the following problem statement: Genre information (usually part of the audio meta-data) alone does not help in better music classification. For example the acoustic version of the song "nothing else matters by Metallica" can be classified as melody music and thereby a person in relaxing or chill out mood might want to listen to this track. But more often than not this track is associated with metal / heavy rock genre and if a listener classified his play-list based on the genre information alone for his current mood, the user shall miss out on listening to this track. Currently methods exist to detect mood in western or similar kind of music. Our paper tries to solve the issue for Indian bollywood music from an Indian cultural context

Keywords: Mood, music classification, music genre, rhythm, music analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3476
270 Doubly Fed Induction Generator Based Variable Speed Wind Conversion System Control Enhancement by Applying Fractional Order Controller

Authors: Abdellatif Kasbi, Abderrafii Rahali

Abstract:

In an electric power grid connected wind generation system, dynamic control strategy is essential to use the wind energy efficiently as well as for an energy optimization. The present study has focused on decoupled power regulation of doubly fed induction generator, operating in wind turbine, in accordance with the vector control approach by applying fractional order proportional integral (FOPI) controller. The FOPI controller is designed based on a simple method; up such that the response of closed loop process is similar to the response of a specified fractional model whose transfer function is Bode’s ideal function. In this tuning operation, the parameters of the proposed fractional controller are established analytically using the impulse closed-loop response of the controlled process. To show the superior action of the developed FOPI controller in comparison with standard PI controller in different function conditions, the study is validated through simulation using the software MATLAB/Simulink.

Keywords: Wind generation system, DFIG, vector control approach, fractional order PI controller, Bode’s ideal transfer function, impulse response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680
269 UPFC Supplementary Controller Design Using Real-Coded Genetic Algorithm for Damping Low Frequency Oscillations in Power Systems

Authors: A.K. Baliarsingh, S. Panda, A.K. Mohanty, C. Ardil

Abstract:

This paper presents a systematic approach for designing Unified Power Flow Controller (UPFC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. Detailed investigations have been carried out considering the four alternatives UPFC based damping controller namely modulating index of series inverter (mB), modulating index of shunt inverter (mE), phase angle of series inverter (δB ) and phase angle of the shunt inverter (δE ). The design problem of the proposed controllers is formulated as an optimization problem and Real- Coded Genetic Algorithm (RCGA) is employed to optimize damping controller parameters. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.

Keywords: Power System Oscillations, Real-Coded Genetic Algorithm (RCGA), Flexible AC Transmission Systems (FACTS), Unified Power Flow Controller (UPFC), Damping Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
268 Rotorcraft Performance and Environmental Impact Evaluation by Multidisciplinary Modelling

Authors: Pierre-Marie Basset, Gabriel Reboul, Binh DangVu, Sébastien Mercier

Abstract:

Rotorcraft provides invaluable services thanks to their Vertical Take-Off and Landing (VTOL), hover and low speed capabilities. Yet their use is still often limited by their cost and environmental impact, especially noise and energy consumption. One of the main brakes to the expansion of the use of rotorcraft for urban missions is the environmental impact. The first main concern for the population is the noise. In order to develop the transversal competency to assess the rotorcraft environmental footprint, a collaboration has been launched between six research departments within ONERA. The progress in terms of models and methods are capitalized into the numerical workshop C.R.E.A.T.I.O.N. “Concepts of Rotorcraft Enhanced Assessment Through Integrated Optimization Network”. A typical mission for which the environmental impact issue is of great relevance has been defined. The first milestone is to perform the pre-sizing of a reference helicopter for this mission. In a second milestone, an alternate rotorcraft concept has been defined: a tandem rotorcraft with optional propulsion. The key design trends are given for the pre-sizing of this rotorcraft aiming at a significant reduction of the global environmental impact while still giving equivalent flight performance and safety with respect to the reference helicopter. The models and methods have been improved for catching sooner and more globally, the relative variations on the environmental impact when changing the rotorcraft architecture, the pre-design variables and the operation parameters.

Keywords: Environmental impact, flight performance, helicopter, rotorcraft pre-sizing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
267 Investigating the Effect of Uncertainty on a LP Model of a Petrochemical Complex: Stability Analysis Approach

Authors: Abdallah Al-Shammari

Abstract:

This study discusses the effect of uncertainty on production levels of a petrochemical complex. Uncertainly or variations in some model parameters, such as prices, supply and demand of materials, can affect the optimality or the efficiency of any chemical process. For any petrochemical complex with many plants, there are many sources of uncertainty and frequent variations which require more attention. Many optimization approaches are proposed in the literature to incorporate uncertainty within the model in order to obtain a robust solution. In this work, a stability analysis approach is applied to a deterministic LP model of a petrochemical complex consists of ten plants to investigate the effect of such variations on the obtained optimal production levels. The proposed approach can determinate the allowable variation ranges of some parameters, mainly objective or RHS coefficients, before the system lose its optimality. Parameters with relatively narrow range of variations, i.e. stability limits, are classified as sensitive parameters or constraints that need accurate estimate or intensive monitoring. These stability limits offer easy-to-use information to the decision maker and help in understanding the interaction between some model parameters and deciding when the system need to be re-optimize. The study shows that maximum production of ethylene and the prices of intermediate products are the most sensitive factors that affect the stability of the optimum solution

Keywords: Linear programming, Petrochemicals, stability analysis, uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
266 Monitoring the Drying and Grinding Process during Production of Celitement through a NIR-Spectroscopy Based Approach

Authors: Carolin Lutz, Jörg Matthes, Patrick Waibel, Ulrich Precht, Krassimir Garbev, Günter Beuchle, Uwe Schweike, Peter Stemmermann, Hubert B. Keller

Abstract:

Online measurement of the product quality is a challenging task in cement production, especially in the production of Celitement, a novel environmentally friendly hydraulic binder. The mineralogy and chemical composition of clinker in ordinary Portland cement production is measured by X-ray diffraction (XRD) and X-ray fluorescence (XRF), where only crystalline constituents can be detected. But only a small part of the Celitement components can be measured via XRD, because most constituents have an amorphous structure. This paper describes the development of algorithms suitable for an on-line monitoring of the final processing step of Celitement based on NIR-data. For calibration intermediate products were dried at different temperatures and ground for variable durations. The products were analyzed using XRD and thermogravimetric analyses together with NIR-spectroscopy to investigate the dependency between the drying and the milling processes on one and the NIR-signal on the other side. As a result, different characteristic parameters have been defined. A short overview of the Celitement process and the challenging tasks of the online measurement and evaluation of the product quality will be presented. Subsequently, methods for systematic development of near-infrared calibration models and the determination of the final calibration model will be introduced. The application of the model on experimental data illustrates that NIR-spectroscopy allows for a quick and sufficiently exact determination of crucial process parameters.

Keywords: Calibration model, celitement, cementitious material, NIR spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730