Search results for: temperature measurement.
3243 Numerical Simulation of Iron Ore Reactor Isobaric and Cooling zone to Investigate Total Carbon Formation in Sponge Iron
Authors: B. Alamsari, S. Torii, A. Trianto, Y. Bindar
Abstract:
Isobaric and cooling zone of iron ore reactor have been simulated. In this paper, heat and mass transfer equation are formulated to perform the temperature and concentration of gas and solid phase respectively. Temperature profile for isobaric zone is simulated on the range temperature of 873-1163K while cooling zone is simulated on the range temperature of 733-1139K. The simulation results have a good agreement with the plant data. Total carbon formation in the isobaric zone is only 30% of total carbon contained in the sponge iron product. The formation of Fe3C in isobaric zone reduces metallization degree up to 0.58% whereas reduction of metallization degree in cooling zone up to 1.139%. The decreasing of sponge iron temperature in the isobaric and cooling zone is around 300 K and 600 K respectively.Keywords: Mathematical Model, Iron Ore Reactor, Cooling Zone, Isobaric zone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16393242 Influence of Ambient Condition on Performance of Wet Compression Process
Authors: Kyoung Hoon Kim
Abstract:
Gas turbine systems with wet compression have a potential for future power generation, since they can offer a high efficiency and a high specific power with a relatively low cost. In this study influence of ambient condition on the performance of the wet compression process is investigated with a non-equilibrium analytical modeling based on droplet evaporation. Transient behaviors of droplet diameter and temperature of mixed air are investigated for various ambient temperatures. Special attention is paid for the effects of ambient temperature, pressure ratio, and water injection ratios on the important wet compression variables including compressor outlet temperature and compression work. Parametric studies show that downing of the ambient temperature leads to lower compressor outlet temperature and consequently lower consumption of compression work even in wet compression processes.Keywords: water injection, droplet evaporation, wet compression, gas turbine, ambient condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17543241 On the Performance Analysis of Coexistence between IEEE 802.11g and IEEE 802.15.4 Networks
Authors: Chompunut Jantarasorn, Chutima Prommak
Abstract:
This paper presents an intensive measurement studying of the network performance analysis when IEEE 802.11g Wireless Local Area Networks (WLAN) coexisting with IEEE 802.15.4 Wireless Personal Area Network (WPAN). The measurement results show that the coexistence between both networks could increase the Frame Error Rate (FER) of the IEEE 802.15.4 networks up to 60% and it could decrease the throughputs of the IEEE 802.11g networks up to 55%.
Keywords: Wireless performance analysis, Coexistence analysis, IEEE 802.11g, IEEE 802.15.4.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19433240 Curriculum Based Measurement and Precision Teaching in Writing Empowerment Enhancement: Results from an Italian Learning Center
Authors: I. Pelizzoni, C. Cavallini, I. Salvaderi, F. Cavallini
Abstract:
We present the improvement in writing skills obtained by 94 participants (aged between six and 10 years) with special educational needs through a writing enhancement program based on fluency principles. The study was planned and conducted with a single-subject experimental plan for each of the participants, in order to confirm the results in the literature. These results were obtained using precision teaching (PT) methodology to increase the number of written graphemes per minute in the pre- and post-test, by curriculum based measurement (CBM). Results indicated an increase in the number of written graphemes for all participants. The average overall duration of the intervention is 144 minutes in five months of treatment. These considerations have been analyzed taking account of the complexity of the implementation of measurement systems in real operational contexts (an Italian learning center) and important aspects of replicability and cost-effectiveness of such interventions.
Keywords: Precision teaching, writing skills, CBM, Italian Learning Center.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7853239 The Effect of the Thermal Temperature and Injected Current on Laser Diode 808 nm Output Power
Authors: Hassan H. Abuelhassan, M. Ali Badawi, Abdelrahman A. Elbadawi, Adam A. Elbashir
Abstract:
In this paper, the effect of the injected current and temperature into the output power of the laser diode module operating at 808nm were applied, studied and discussed. Low power diode laser was employed as a source. The experimental results were demonstrated and then the output power of laser diode module operating at 808nm was clearly changed by the thermal temperature and injected current. The output power increases by the increasing the injected current and temperature. We also showed that the increasing of the injected current results rising in heat, which also, results into decreasing of the laser diode output power during the highest temperature as well. The best ranges of characteristics made by diode module operating at 808nm were carefully handled and determined.
Keywords: Laser diode, light amplification, injected current, output power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18233238 The Laser Line Detection for Autonomous Mapping Based on Color Segmentation
Authors: Pavel Chmelar, Martin Dobrovolny
Abstract:
Laser projection or laser footprint detection is today widely used in many fields of robotics, measurement or electronics. The system accuracy strictly depends on precise laser footprint detection on target objects. This article deals with the laser line detection based on the RGB segmentation and the component labeling. As a measurement device was used the developed optical rangefinder. The optical rangefinder is equipped with vertical sweeping of the laser beam and high quality camera. This system was developed mainly for automatic exploration and mapping of unknown spaces. In the first section is presented a new detection algorithm. In the second section are presented measurements results. The measurements were performed in variable light conditions in interiors. The last part of the article present achieved results and their differences between day and night measurements.
Keywords: Automatic mapping, color segmentation, component labeling, distance measurement, laser line detection, vector map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35633237 A New Approach to Signal Processing for DC-Electromagnetic Flowmeters
Authors: Michael Schukat
Abstract:
Electromagnetic flowmeters with DC excitation are used for a wide range of fluid measurement tasks, but are rarely found in dosing applications with short measurement cycles due to the achievable accuracy. This paper will identify a number of factors that influence the accuracy of this sensor type when used for short-term measurements. Based on these results a new signal-processing algorithm will be described that overcomes the identified problems to some extend. This new method allows principally a higher accuracy of electromagnetic flowmeters with DC excitation than traditional methods.
Keywords: Electromagnetic Flowmeter, Kalman Filter, ShortMeasurement Cycles, Signal Estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16143236 A Study of Adaptive Fault Detection Method for GNSS Applications
Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee
Abstract:
This study is purposed to develop an efficient fault detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive noise covariance estimation. Due to the dependence on radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. In the proposed method, the pseudorange and carrier-phase measurement noise covariances are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. The test statistics for fault detection are generated by the estimated measurement noise covariances. To evaluate the fault detection capability, intentional faults were added to the filed-collected measurements. The experiment result shows that the proposed method is efficient in detecting unhealthy measurements and improves GNSS positioning accuracy against fault occurrences.
Keywords: Adaptive estimation, fault detection, GNSS, residual.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25553235 Quality Monitoring and Dynamic Pricing in Cold Chain Management
Authors: Myo Min Aung, Yoon Seok Chang, Woo Ram Kim
Abstract:
This paper presents a cold chain monitoring system which focuses on assessment of quality and dynamic pricing information about food in cold chain. Cold chain is composed of many actors and stages; however it can be seen as a single entity since a breakdown in temperature control at any stage can impact the final quality of the product. In a cold chain, the shelf life, quality, and safety of perishable food throughout the supply chain is greatly impacted by environmental factors especially temperature. In this paper, a prototype application is implemented to retrieve timetemperature history, the current quality and the dynamic price setting according to changing quality impacted by temperature fluctuations in real-time.
Keywords: Cold chain, monitoring, quality, temperature, traceability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30653234 Numerical Simulation of R410a-R23 and R404A-R508B Cascade Refrigeration System
Authors: A. D. Parekh, P. R. Tailor, Tejendra Patel
Abstract:
Capacity and efficiency of any refrigerating system diminish rapidly as the difference between the evaporating and condensing temperature is increased by a reduction in the evaporator temperature. The single stage vapour compression refrigeration system using various refrigerants are limited to an evaporator temperature of -40 0C. Below temperature of -40 0C the either cascade refrigeration system or multi stage vapour compression system is employed. Present work describes thermal design of condenser (HTS), cascade condenser and evaporator (LTS) of R404A-R508B and R410A-R23 cascade refrigeration system. Heat transfer area of condenser, cascade condenser and evaporator for both systems are compared and the effect of condenser and evaporator temperature on heat-transfer area for both systems is studied under same operating condition. The results shows that the required heat-transfer area of condenser and cascade condenser for R410A-R23 cascade system is lower than the R404A-R508B cascade system but heat transfer area of evaporator is similar for both the system. The heat transfer area of condenser and cascade condenser decreases with increase in condenser temperature (Tc), whereas the heat transfer area of cascade condenser and evaporator increases with increase in evaporator temperature (Te).Keywords: Heat-transfer area, R410A, R404A, R508B, R23, Refrigeration system, Thermal design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45703233 Creeping Control Strategy for Direct Shift Gearbox Based on the Investigation of Temperature Variation of the Wet Clutch
Authors: Biao Ma, Jikai Liu, Man Chen, Jianpeng Wu, Liyong Wang, Changsong Zheng
Abstract:
Proposing an appropriate control strategy is an effective and practical way to address the overheat problems of the wet multi-plate clutch in Direct Shift Gearbox under the long-time creeping condition. To do so, the temperature variation of the wet multi-plate clutch is investigated firstly by establishing a thermal resistance model for the gearbox cooling system. To calculate the generated heat flux and predict the clutch temperature precisely, the friction torque model is optimized by introducing an improved friction coefficient, which is related to the pressure, the relative speed and the temperature. After that, the heat transfer model and the reasonable friction torque model are employed by the vehicle powertrain model to construct a comprehensive co-simulation model for the Direct Shift Gearbox (DSG) vehicle. A creeping control strategy is then proposed and, to evaluate the vehicle performance, the safety temperature (250 ℃) is particularly adopted as an important metric. During the creeping process, the temperature of two clutches is always under the safety value (250 ℃), which demonstrates the effectiveness of the proposed control strategy in avoiding the thermal failures of clutches.
Keywords: Creeping control strategy, direct shift gearbox, temperature variation, wet clutch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7223232 Temperature-dependent Structural Perturbation of Tuna Myoglobin
Authors: Yoshihiro Ochiai
Abstract:
To unveil the mechanism of fast autooxidation of fish myoglobins, the effect of temperature on the structural change of tuna myoglobin was investigated. Purified myoglobin was subjected to preincubation at 5, 20, 50 and 40oC. Overall helical structural decay through thermal treatment up to 95oC was monitored by circular dichroism spectrometry, while the structural changes around the heme pocket was measured by ultraviolet/visible absorption spectrophotometry. As a result, no essential structural change of myoglobin was observed under 30oC, roughly equivalent to their body temperature, but the structure was clearly damaged at 40oC. The Soret band absorption hardly differed irrespective of preincubation temperature, suggesting that the structure around the heme pocket was not perturbed even after thermal treatment.Keywords: denaturation, myoglobin, stability, tuna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19853231 Thermography Evaluation on Facial Temperature Recovery after Elastic Gum
Authors: A. Dionísio, L. Roseiro, J. Fonseca, P. Nicolau
Abstract:
Thermography is a non-radiating and contact-free technology which can be used to monitor skin temperature. The efficiency and safety of thermography technology make it a useful tool for detecting and locating thermal changes in skin surface, characterized by increases or decreases in temperature. This work intends to be a contribution for the use of thermography as a methodology for evaluation of skin temperature in the context of orofacial biomechanics. The study aims to identify the oscillations of skin temperature in the left and right hemiface regions of the masseter muscle, during and after thermal stimulus, and estimate the time required to restore the initial temperature after the application of the stimulus. Using a FLIR T430sc camera, a data acquisition protocol was followed with a group of eight volunteers, aged between 22 and 27 years. The tests were performed in a controlled environment with the volunteers in a comfortably static position. The thermal stimulus involves the use of an ice volume with controlled size and contact surface. The skin surface temperature was recorded in two distinct situations, namely without further stimulus and with the additions of a stimulus obtained by a chewing gum. The data obtained were treated using FLIR Research IR Max software. The time required to recover the initial temperature ranged from 20 to 52 minutes when no stimulus was added and varied between 8 and 26 minutes with the chewing gum stimulus. These results show that recovery is faster with the addition of the stimulus and may guide clinicians regarding the pre and post-operative times with ice therapy, in the presence or absence of mechanical stimulus that increases muscle functions (e.g. phonetics or mastication).
Keywords: Thermography, orofacial biomechanics, skin temperature, ice therapy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11463230 Field Study on Thermal Performance of a Green Office in Bangkok, Thailand: A Possibility of Increasing Temperature Set-Points
Authors: T. Sikram, M. Ichinose, R. Sasaki
Abstract:
In the tropics, indoor thermal environment is usually provided by a cooling mode to maintain comfort all year. Indoor thermal environment performance is sometimes different from the standard or from the first design process because of operation, maintenance, and utilization. The field study of thermal environment in the green building is still limited in this region, while the green building continues to increase. This study aims to clarify thermal performance and subjective perception in the green building by testing the temperature set-points. A Thai green office was investigated twice in October 2018 and in May 2019. Indoor environment variables (temperature, relative humidity, and wind velocity) were collected continuously. The temperature set-point was normally set as 23 °C, and it was changed into 24 °C and 25 °C. The study found that this gap of temperature set-point produced average room temperature from 22.7 to 24.6 °C and average relative humidity from 55% to 62%. Thermal environments slight shifted out of the ASHRAE comfort zone when the set-point was increased. Based on the thermal sensation vote, the feeling-colder vote decreased by 30% and 18% when changing +1 °C and +2 °C, respectively. Predicted mean vote (PMV) shows that most of the calculated median values were negative. The values went close to the optimal neutral value (0) when the set-point was set at 25 °C. The neutral temperature was slightly decreased when changing warmer temperature set-points. Building-related symptom reports were found in this study that the number of votes reduced continuously when the temperature was warmer. The symptoms that occurred by a cooler condition had the number of votes more than ones that occurred by a warmer condition. In sum, for this green office, there is a possibility to adjust a higher temperature set-point to +1 °C (24 °C) in terms of reducing cold sensitivity, discomfort, and symptoms. All results could support the policy of changing a warmer temperature of this office to become “a better green building”.
Keywords: Thermal environment, green office, temperature set-point, comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6713229 Application of Medium High Hydrostatic Pressure in Preserving Textural Quality and Safety of Pineapple Compote
Authors: Nazim Uddin, Yohiko Nakaura, Kazutaka Yamamoto
Abstract:
Compote (fruit in syrup) of pineapple (Ananas comosus L. Merrill) is expected to have a high market potential as one of convenient ready-to-eat (RTE) foods worldwide. High hydrostatic pressure (HHP) in combination with low temperature (LT) was applied to the processing of pineapple compote as well as medium HHP (MHHP) in combination with medium-high temperature (MHT) since both processes can enhance liquid impregnation and inactivate microbes. MHHP+MHT (55 or 65 °C) process, as well as the HHP+LT process, has successfully inactivated the microbes in the compote to a non-detectable level. Although the compotes processed by MHHP+MHT or HHP+LT have lost the fresh texture as in a similar manner as those processed solely by heat, it was indicated that the texture degradations by heat were suppressed under MHHP. Degassing process reduced the hardness, while calcium (Ca) contributed to be retained hardness in MHT and MHHP+MHT processes. Electrical impedance measurement supported the damage due to degassing and heat. The color, Brix, and appearance were not affected by the processing methods significantly. MHHP+MHT and HHP+LT processes may be applicable to produce high-quality, safe RTE pineapple compotes. Further studies on the optimization of packaging and storage condition will be indispensable for commercialization.
Keywords: Compote of pineapple, ready-to-eat, medium high hydrostatic pressure, postharvest loss, and texture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8073228 Elasto-Plastic Behavior of Rock during Temperature Drop
Authors: N. Reppas, Y. L. Gui, B. Wetenhall, C. T. Davie, J. Ma
Abstract:
A theoretical constitutive model describing the stress-strain behavior of rock subjected to different confining pressures is presented. A bounding surface plastic model with hardening effects is proposed which includes the effect of temperature drop. The bounding surface is based on a mapping rule and the temperature effect on rock is controlled by Poisson’s ratio. Validation of the results against available experimental data is also presented. The relation of deviatoric stress and axial strain is illustrated at different temperatures to analyze the effect of temperature decrease in terms of stiffness of the material.
Keywords: Bounding surface, cooling of rock, plasticity model, rock deformation, elasto-plastic behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9183227 Using ANSYS to Realize a Semi-Analytical Method for Predicting Temperature Profile in Injection/Production Well
Authors: N. Tarom, M.M. Hossain
Abstract:
Determination of wellbore problems during a production/injection process might be evaluated thorough temperature log analysis. Other applications of this kind of log analysis may also include evaluation of fluid distribution analysis along the wellbore and identification of anomalies encountered during production/injection process. While the accuracy of such prediction is paramount, the common method of determination of a wellbore temperature log includes use of steady-state energy balance equations, which hardly describe the real conditions as observed in typical oil and gas flowing wells during production operation; and thus increase level of uncertainties. In this study, a practical method has been proposed through development of a simplified semianalytical model to apply for predicting temperature profile along the wellbore. The developed model includes an overall heat transfer coefficient accounting all modes of heat transferring mechanism, which has been focused on the prediction of a temperature profile as a function of depth for the injection/production wells. The model has been validated with the results obtained from numerical simulation.Keywords: Energy balance equation, reservoir and well performance, temperature log, overall heat transfer coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27353226 Nonlinear Power Measurement Algorithm of the Input Mix Components of the Noise Signal and Pulse Interference
Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev, Andrey V. Klyuev
Abstract:
A power measurement algorithm of the input mix components of the noise signal and pulse interference is considered. The algorithm efficiency analysis has been carried out for different interference-to-signal ratio. Algorithm performance features have been explored by numerical experiment results.
Keywords: Noise signal, pulse interference, signal power, spectrum width, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14723225 Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors
Authors: K. Touafek, A. Khelifa, E. H. Khettaf, A. Embarek
Abstract:
Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a hybrid prototype to evaluate electrical and thermal performance. In this paper, an experimental study of two new configurations of hybrid collectors is exposed. The results are given and interpreted. The two configurations of absorber studied are a new combination with tubes and galvanized tank, the other is a tubes and sheet.
Keywords: Experimental, Photovoltaic, Solar, Temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22293224 Temperature-Dependent Barrier Characteristics of Inhomogeneous Pd/n-GaN Schottky Barrier Diodes Surface
Authors: K. Al-Heuseen, M. R. Hashim
Abstract:
The current-voltage (I-V) characteristics of Pd/n-GaN Schottky barrier were studied at temperatures over room temperature (300-470K). The values of ideality factor (n), zero-bias barrier height (φB0), flat barrier height (φBF) and series resistance (Rs) obtained from I-V-T measurements were found to be strongly temperature dependent while (φBo) increase, (n), (φBF) and (Rs) decrease with increasing temperature. The apparent Richardson constant was found to be 2.1x10-9 Acm-2K-2 and mean barrier height of 0.19 eV. After barrier height inhomogeneities correction, by assuming a Gaussian distribution (GD) of the barrier heights, the Richardson constant and the mean barrier height were obtained as 23 Acm-2K-2 and 1.78eV, respectively. The corrected Richardson constant was very closer to theoretical value of 26 Acm-2K-2.
Keywords: Electrical properties, Gaussian distribution, Pd-GaN Schottky diodes, thermionic emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21883223 Thermodynamic Analysis of R507A-R23 Cascade Refrigeration System
Authors: A. D. Parekh, P. R. Tailor
Abstract:
The present work deals with thermodynamic analysis of cascade refrigeration system using ozone friendly refrigerants pair R507A and R23. R507A is azeotropic mixture composed of HFC refrigerants R125/R143a (50%/50% wt.). R23 is a single component HFC refrigerant used as replacement to CFC refrigerant R13 in low temperature applications. These refrigerants have zero ozone depletion potential and are non-flammable and as R507A an azeotropic mixture there is no problem of temperature glide. This study thermodynamically analyzed R507A-R23 cascade refrigeration system to optimize the design and operating parameters of the system. The design and operating parameters include: Condensing, evaporating, subcooling and superheating temperatures in the high temperature circuit, temperature difference in the cascade heat exchanger, Condensing, evaporating, subcooling and superheating temperatures in the low temperature circuit.Keywords: COP, R507A, R23, cascade refrigeration system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29463222 Low Air Velocity Measurement Characteristics- Variation Due to Flow Regime
Authors: A. Pedišius, V. Janušas, A. Bertašienė
Abstract:
The paper depicts air velocity values, reproduced by laser Doppler anemometer (LDA) and ultrasonic anemometer (UA), relations with calculated ones from flow rate measurements using the gas meter which calibration uncertainty is ± (0.15 – 0.30) %. Investigation had been performed in channel installed in aerodynamical facility used as a part of national standard of air velocity. Relations defined in a research let us confirm the LDA and UA for air velocity reproduction to be the most advantageous measures. The results affirm ultrasonic anemometer to be reliable and favourable instrument for measurement of mean velocity or control of velocity stability in the velocity range of 0.05 m/s – 10 (15) m/s when the LDA used. The main aim of this research is to investigate low velocity regularities, starting from 0.05 m/s, including region of turbulent, laminar and transitional air flows. Theoretical and experimental results and brief analysis of it are given in the paper. Maximum and mean velocity relations for transitional air flow having unique distribution are represented. Transitional flow having distinctive and different from laminar and turbulent flow characteristics experimentally have not yet been analysed.
Keywords: Laser Doppler anemometer, ultrasonic anemometer, air flow velocities, transitional flow regime, measurement, uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20103221 Fair Value Implementation of Financial Asset: Evidence in Indonesia’s Banking Sector
Authors: Alhamdi Alfi Fajri
Abstract:
The purpose of this study is to analyze and to give empirical proof about the effect of fair value implementation on financial asset against information asymmetry in Indonesia’s banking sector. This research tested the effect of fair value implementation on financial asset based on Statement of Financial Accounting Standard (PSAK) No. 55 and the fair value reliability measurement based on PSAK No. 60 against level of information asymmetry. The scope of research is Indonesia’s banking sector. The test’s result shows that the use of fair value based on PSAK No. 55 is significantly associated with information asymmetry. This positive relation is higher than the amortized cost implementation on financial asset. In addition, the fair value hierarchy based on PSAK No. 60 is significantly associated with information asymmetry. This research proves that the more reliable measurement of fair value on financial asset, the more observable fair value measurement and reduces level of information asymmetry.Keywords: Fair value, PSAK No. 55, PSAK No. 60, information asymmetry, banks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19543220 Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach
Authors: Seyed Habib A. Rahmati, Mohsen Sadegh Amalnick
Abstract:
Different terms of the Statistical Process Control (SPC) has sketch in the fuzzy environment. However, Measurement System Analysis (MSA), as a main branch of the SPC, is rarely investigated in fuzzy area. This procedure assesses the suitability of the data to be used in later stages or decisions of the SPC. Therefore, this research focuses on some important measures of MSA and through a new method introduces the measures in fuzzy environment. In this method, which works based on Buckley approach, imprecision and vagueness nature of the real world measurement are considered simultaneously. To do so, fuzzy version of the gauge capability (Cg and Cgk) are introduced. The method is also explained through example clearly.Keywords: SPC, MSA, gauge capability, Cg, Cgk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51793219 Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer
Authors: Sumit Tiwari, Rohit Tripathi, G. N. Tiwari
Abstract:
Present study focused on the utilization of solar energy by the help of photovoltaic greenhouse solar dryer under forced mode. A single slope photovoltaic greenhouse solar dryer has been proposed and thermal modelling has been developed. Various parameters have been calculated by thermal modelling such as greenhouse room temperature, cell temperature, crop temperature and air temperature at exit of greenhouse. Further cell efficiency, thermal efficiency, and overall thermal efficiency have been calculated for a typical day of May and November. It was found that system can generate equivalent thermal energy up to 7.65 kW and 6.66 kW per day for clear day of May and November respectively.Keywords: Characteristics curve, Photovoltaic, Thermal modelling, Thermal efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25223218 Deposition of Transparent IGZO Conducting Thin Films by Co-Sputtering of Zn2Ga2O3 and In2O3 Targets at Room Temperature
Authors: Yu-Hsin Chen, Yuan-Tai Hsieh, Cheng-Shong Hong, Chia-Ching Wu, Cheng-Fu Yang, Yu-Jhen Liou
Abstract:
In this study, we investigated (In,Ga,Zn)Ox (IGZO) thin films and examined their characteristics of using Ga2O3-2 ZnO (GZO) co-sputtered In2O3 prepared by dual target radio frequency magnetron sputtering at room temperature in a pure Ar atmosphere. RF powers of 80 W and 70 W were used for GZO and pure In2O3, room temperature (RT) was used as deposition temperature, and the deposition time was changed from 15 min to 60 min. Structural, surface, electrical, and optical properties of IGZO thin films were investigated as a function of deposition time. Furthermore, the GZO co-sputtered In2O3 thin films showed a very smooth and featureless surface and an amorphous structure regardless of the deposition time due to the room temperature sputtering process. We would show that the co-sputtered IGZO thin films exhibited transparent electrode properties with high transmittance ratio and low resistivity.
Keywords: IGZO, co-sputter, Ga2O3-2 ZnO, In2O3.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32623217 Investigating the Transformer Operating Conditions for Evaluating the Dielectric Response
Authors: Jalal M. Abdallah
Abstract:
This paper presents an experimental investigation of transformer dielectric response and solid insulation water content. The dielectric response was carried out on the base of Hybrid Frequency Dielectric Spectroscopy and Polarization Current measurements method (FDS &PC). The calculation of the water content in paper is based on the water content in oil and the obtained equilibrium curves. A reference measurements were performed at equilibrium conditions for water content in oil and paper of transformer at different stable temperatures (25, 50, 60 and 70°C) to prepare references to evaluate the insulation behavior at the not equilibrium conditions. Some measurements performed at the different simulated normal working modes of transformer operation at the same temperature where the equilibrium conditions. The obtained results show that when transformer temperature is mach more than the its ambient temperature, the transformer temperature decreases immediately after disconnecting the transformer from the network and this temperature reduction influences the transformer insulation condition in the measuring process. In addition to the oil temperature at the near places to the sensors, the temperature uniformity in transformer which can be changed by a big change in the load of transformer before the measuring time will influence the result. The investigations have shown that the extremely influence of the time between disconnecting the transformer and beginning the measurements on the results. And the online monitoring for water content in paper measurements, on the basis of the oil water content on line monitoring and the obtained equilibrium curves. The measurements where performed continuously and for about 50 days without any disconnection in the prepared the adiabatic room.Keywords: Conductivity, Moisture, Temperature, Oil-paperinsulation, Online monitoring, Water content in oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26473216 Monitorization of Junction Temperature Using a Thermal-Test-Device
Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles
Abstract:
Due to the higher power loss levels in electronic components, the thermal design of PCBs (Printed Circuit Boards) of an assembled device becomes one of the most important quality factors in electronics. Nonetheless, some of leading causes of the microelectronic component failures are due to higher temperatures, the leakages or thermal-mechanical stress, which is a concern, is the reliability of microelectronic packages. This article presents an experimental approach to measure the junction temperature of exposed pad packages. The implemented solution is in a prototype phase, using a temperature-sensitive parameter (TSP) to measure temperature directly on the die, validating the numeric results provided by the Mechanical APDL (Ansys Parametric Design Language) under same conditions. The physical device-under-test is composed by a Thermal Test Chip (TTC-1002) and assembly in a QFN cavity, soldered to a test-board according to JEDEC Standards. Monitoring the voltage drop across a forward-biased diode, is an indirectly method but accurate to obtain the junction temperature of QFN component with an applied power range between 0,3W to 1.5W. The temperature distributions on the PCB test-board and QFN cavity surface were monitored by an infra-red thermal camera (Goby-384) controlled and images processed by the Xeneth software. The article provides a set-up to monitorize in real-time the junction temperature of ICs, namely devices with the exposed pad package (i.e. QFN). Presenting the PCB layout parameters that the designer should use to improve thermal performance, and evaluate the impact of voids in solder interface in the device junction temperature.
Keywords: Quad Flat No-Lead packages, exposed pads, junction temperature, thermal management, measurements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17123215 Using Data Mining Techniques for Estimating Minimum, Maximum and Average Daily Temperature Values
Authors: S. Kotsiantis, A. Kostoulas, S. Lykoudis, A. Argiriou, K. Menagias
Abstract:
Estimates of temperature values at a specific time of day, from daytime and daily profiles, are needed for a number of environmental, ecological, agricultural and technical applications, ranging from natural hazards assessments, crop growth forecasting to design of solar energy systems. The scope of this research is to investigate the efficiency of data mining techniques in estimating minimum, maximum and mean temperature values. For this reason, a number of experiments have been conducted with well-known regression algorithms using temperature data from the city of Patras in Greece. The performance of these algorithms has been evaluated using standard statistical indicators, such as Correlation Coefficient, Root Mean Squared Error, etc.
Keywords: regression algorithms, supervised machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34183214 Contact Angle Measurement of the Vinyl Ester Matrix Nanocomposites Based On Layered Silicate
Authors: A. I. Alateyah, H. N. Dhakal, Z. Y. Zhang
Abstract:
Contact angle measurement was utilized in order to study the subject of the wettability and surface chemistry of the nanocomposites materials. Water and glycerol droplets were used in this study. The incorporation of layered silicate into the vinyl ester matrix helped to improve the wettability and reduced the θ values of both liquids used. The addition of 2 wt.% clay loading reduced the θ values of water and glycerol by up to 21% and 6% respectively. Likewise, the incorporation of 4 wt.% clay loading reduced the water and glycerol θ values by 49% and 38% respectively. Also this study confirms the findings in the literature regarding the relationship between the intercalation nanocomposites level and the wettability. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilised in order to characterise the interlamellar structure of nanocomposites.
Keywords: Vinyl ester, nanocomposites, layered silicate, characterisations, contact angle measurement, wettability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123