Search results for: spatial structures
1651 Probabilistic Center Voting Method for Subsequent Object Tracking and Segmentation
Authors: Suryanto, Hyo-Kak Kim, Sang-Hee Park, Dae-Hwan Kim, Sung-Jea Ko
Abstract:
In this paper, we introduce a novel algorithm for object tracking in video sequence. In order to represent the object to be tracked, we propose a spatial color histogram model which encodes both the color distribution and spatial information. The object tracking from frame to frame is accomplished via center voting and back projection method. The center voting method has every pixel in the new frame to cast a vote on whereabouts the object center is. The back projection method segments the object from the background. The segmented foreground provides information on object size and orientation, omitting the need to estimate them separately. We do not put any assumption on camera motion; the proposed algorithm works equally well for object tracking in both static and moving camera videos.
Keywords: center voting, back projection, object tracking, size adaptation, non-stationary camera tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16671650 Damping Mechanism in Welded Structures
Abstract:
Response surface methodology with Box–Benhken (BB) design of experiment approach has been utilized to study the mechanism of interface slip damping in layered and jointed tack welded beams with varying surface roughness. The design utilizes the initial amplitude of excitation, tack length and surface roughness at the interfaces to develop the model for the logarithmic damping decrement of the layered and jointed welded structures. Statistically designed experiments have been performed to estimate the coefficients in the mathematical model, predict the response, and check the adequacy of the model. Comparison of predicted and experimental response values outside the design conditions have shown good correspondence, implying that empirical model derived from response surface approach can be effectively used to describe the mechanism of interface slip damping in layered and jointed tack welded structures.
Keywords: Interface slip damping, welded joint, surface roughness, amplitude, tack length, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18291649 Module and Comodule Structures on Path Space
Abstract:
On path space kQ, there is a trivial kQa-module structure determined by the multiplication of path algebra kQa and a trivial kQc-comodule structure determined by the comultiplication of path coalgebra kQc. In this paper, on path space kQ, a nontrivial kQa-module structure is defined, and it is proved that this nontrivial left kQa-module structure is isomorphic to the dual module structure of trivial right kQc-comodule. Dually, on path space kQ, a nontrivial kQc-comodule structure is defined, and it is proved that this nontrivial right kQc-comodule structure is isomorphic to the dual comodule structure of trivial left kQa-module. Finally, the trivial and nontrivial module structures on path space are compared from the aspect of submodule, and the trivial and nontrivial comodule structures on path space are compared from the aspect of subcomodule.Keywords: Quiver, path space, module, comodule, dual.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8551648 Analysis of Wave Propagation in Two-dimensional Phononic Crystals with Hollow Cylinders
Authors: Zi-Gui Huang, Tsung-Tsong Wu
Abstract:
Large full frequency band gaps of surface and bulk acoustic waves in two-dimensional phononic band structures with hollow cylinders are addressed in this paper. It is well-known that absolute frequency band gaps are difficultly obtained in a band structure consisted of low-acoustic-impedance cylinders in high-acoustic-impedance host materials such as PMMA/Ni band structures. Phononic band structures with hollow cylinders are analyzed and discussed to obtain large full frequency band gaps not only for bulk modes but also for surface modes. The tendency of absolute frequency band gaps of surface and bulk acoustic waves is also addressed by changing the inner radius of hollow cylinders in this paper. The technique and this kind of band structure are useful for tuning the frequency band gaps and the design of acoustic waveguides.Keywords: Phononic crystals, Band gap, SAW, BAW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19881647 Application of Transform Fourier for Dynamic Control of Structures with Global Positioning System
Authors: J. M. de Luis Ruiz, P. M. Sierra García, R. P. García, R. P. Álvarez, F. P. García, E. C. López
Abstract:
Given the evolution of viaducts, structural health monitoring requires more complex techniques to define their state. two alternatives can be distinguished: experimental and operational modal analysis. Although accelerometers or Global Positioning System (GPS) have been applied for the monitoring of structures under exploitation, the dynamic monitoring during the stage of construction is not common. This research analyzes whether GPS data can be applied to certain dynamic geometric controls of evolving structures. The fundamentals of this work were applied to the New Bridge of Cádiz (Spain), a worldwide milestone in bridge building. GPS data were recorded with an interval of 1 second during the erection of segments and turned to the frequency domain with Fourier transform. The vibration period and amplitude were contrasted with those provided by the finite element model, with differences of less than 10%, which is admissible. This process provides a vibration record of the structure with GPS, avoiding specific equipment.
Keywords: Fourier transform, global position system, operational modal analysis, structural health monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9331646 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20531645 Deformation of Water Waves by Geometric Transitions with Power Law Function Distribution
Authors: E. G. Bautista, J. M. Reyes, O. Bautista, J. C. Arcos
Abstract:
In this work, we analyze the deformation of surface waves in shallow flows conditions, propagating in a channel of slowly varying cross-section. Based on a singular perturbation technique, the main purpose is to predict the motion of waves by using a dimensionless formulation of the governing equations, considering that the longitudinal variation of the transversal section obey a power-law distribution. We show that the spatial distribution of the waves in the varying cross-section is a function of a kinematic parameter,κ , and two geometrical parameters εh and w ε . The above spatial behavior of the surface elevation is modeled by an ordinary differential equation. The use of single formulas to model the varying cross sections or transitions considered in this work can be a useful approximation to natural or artificial geometrical configurations.
Keywords: Surface waves, Asymptotic solution, Power law function, Non-dispersive waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18581644 Vibration Attenuation in Layered and Welded Beams with Unequal Thickness
Authors: B. Singh, K. K. Agrawal, B. K. Nanda
Abstract:
In built-up structures, one of the effective ways of dissipating unwanted vibration is to exploit the occurrence of slip at the interfaces of structural laminates. The present work focuses on the dynamic analysis of welded structures. A mathematical formulation has been developed for the mechanism of slip damping in layered and welded mild steel beams with unequal thickness subjected to both periodic and non-periodic forces. It is observed that a number of vital parameters such as; thickness ratio, pressure distribution characteristics, relative slip and kinematic co-efficient of friction at the interfaces, nature of exciting forces, length and thickness of the beam specimen govern the damping characteristics of these structures. Experimental verification has been carried out to validate the analysis and study the effect of these parameters. The developed damping model for the structure is found to be in fairly good agreement with the measured data. Finally, the results of the analysis are discussed and rationalized.Keywords: Slip damping, tack welded joint, thickness ratio, inplane bending stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14941643 Seismic Assessment of Old Existing RC Buildings on Madinah with Masonry Infilled Using Ambient Vibration Measurements
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
Early pre-code reinforced concrete structures present undetermined resistance to earthquakes. This situation is particularly unacceptable in the case of essential structures, such as healthcare structures and pilgrims' houses. Amongst these, an existing old RC building in Madinah city (KSA) is seismically evaluated with and without infill wall and their dynamic characteristics are compared with measured values in the field using ambient vibration measurements (AVM). After updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (Nonlinear static analysis) was carried out using commercial structural analysis software incorporating inelastic material properties for concrete, infill and steel. The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results summarized and discussed.
Keywords: Seismic Assessment, Pushover Analysis, Ambient vibration, Modal update.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24891642 Parallel Computation in Hypersonic Aerodynamic Heating Problem
Authors: Ding Guo-hao, Li Hua, Wang Wen-long
Abstract:
A parallel computational fluid dynamics code has been developed for the study of aerodynamic heating problem in hypersonic flows. The code employs the 3D Navier-Stokes equations as the basic governing equations to simulate the laminar hypersonic flow. The cell centered finite volume method based on structured grid is applied for spatial discretization. The AUSMPW+ scheme is used for the inviscid fluxes, and the MUSCL approach is used for higher order spatial accuracy. The implicit LU-SGS scheme is applied for time integration to accelerate the convergence of computations in steady flows. A parallel programming method based on MPI is employed to shorten the computing time. The validity of the code is demonstrated by comparing the numerical calculation result with the experimental data of a hypersonic flow field around a blunt body.Keywords: Aerodynamic Heating, AUSMPW+, MPI, ParallelComputation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19651641 The Effects on the People's Preference on the Cityscape by the Spatial Characteristics of the Streetscape-Centered on 'Design Seoul Street'-
Authors: Eun-JungKo, Bur-Deul Yoon, Sung-Won Choi, Hong-Kyu Kim
Abstract:
Jacobs, A.B. (1993) stated that "When I think of a city, the first thing that comes to mind is the street. If the street is interesting, the rest of the city is interesting. If the street is mundane, the city is also mundane." In this statement, he expresses the importance of the streetscape and the street environment. The objective of this paper is to analyze the spatial relationships of the streetscape that affect the general public's preference of the cityscape. Furthermore, this research focuses on the important role that streetscape plays in public perception of the city by the pedestrians who experience it daily. The subject of this paper is eight of the "Design Seoul Street."The analysis and survey results show the preference criteria that affect the streetscape and ultimately the cityscape. This research endeavor shows that differences in physical form, shape, size, color, locations, and context are important.Keywords: Cityscape, Design Seoul Street, street, streetscape.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12881640 Study the Influence of Chemical Treatment on the Compositional Changes and Defect Structures of ZnS Thin Film
Authors: N. Dahbi, D-E. Arafah
Abstract:
The effect of chemical treatment in CdCl2 on the compositional changes and defect structures of potentially useful ZnS solar cell thin films prepared by vacuum deposition method was studied using the complementary Rutherford backscattering (RBS) and Thermoluminesence (TL) techniques. A series of electron and hole traps are found in the various as deposited samples studied. After treatment, perturbation on the intensity is noted; mobile defect states and charge conversion and/or transfer between defect states are found.Keywords: chemical treatment, defect, glow curve, RBS, thinfilm, thermoluminescence, ZnS, vacuum deposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15991639 Analyzing Periurban Fringe with Rough Set
Authors: Benedetto Manganelli, Beniamino Murgante
Abstract:
The distinction among urban, periurban and rural areas represents a classical example of uncertainty in land classification. Satellite images, geostatistical analysis and all kinds of spatial data are very useful in urban sprawl studies, but it is important to define precise rules in combining great amounts of data to build complex knowledge about territory. Rough Set theory may be a useful method to employ in this field. It represents a different mathematical approach to uncertainty by capturing the indiscernibility. Two different phenomena can be indiscernible in some contexts and classified in the same way when combining available information about them. This approach has been applied in a case of study, comparing the results achieved with both Map Algebra technique and Spatial Rough Set. The study case area, Potenza Province, is particularly suitable for the application of this theory, because it includes 100 municipalities with different number of inhabitants and morphologic features.
Keywords: Land Classification, Map Algebra, Periurban Fringe, Rough Set, Urban Planning, Urban Sprawl.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17241638 Present Status, Driving Forces and Pattern Optimization of Territory in Hubei Province, China
Abstract:
“National Territorial Planning (2016-2030)” was issued by the State Council of China in 2017. As an important initiative of putting it into effect, territorial planning at provincial level makes overall arrangement of territorial development, resources and environment protection, comprehensive renovation and security system construction. Hubei province, as the pivot of the “Rise of Central China” national strategy, is now confronted with great opportunities and challenges in territorial development, protection, and renovation. Territorial spatial pattern experiences long time evolution, influenced by multiple internal and external driving forces. It is not clear what are the main causes of its formation and what are effective ways of optimizing it. By analyzing land use data in 2016, this paper reveals present status of territory in Hubei. Combined with economic and social data and construction information, driving forces of territorial spatial pattern are then analyzed. Research demonstrates that the three types of territorial space aggregate distinctively. The four aspects of driving forces include natural background which sets the stage for main functions, population and economic factors which generate agglomeration effect, transportation infrastructure construction which leads to axial expansion and significant provincial strategies which encourage the established path. On this basis, targeted strategies for optimizing territory spatial pattern are then put forward. Hierarchical protection pattern should be established based on development intensity control as respect for nature. By optimizing the layout of population and industry and improving the transportation network, polycentric network-based development pattern could be established. These findings provide basis for Hubei Territorial Planning, and reference for future territorial planning in other provinces.Keywords: Driving forces, Hubei, optimizing strategies, spatial pattern, territory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6231637 Effect of Shear Wall Openings on the Fundamental Period of Shear Wall Structures
Authors: Anas M. Fares, A. Touqan
Abstract:
A common approach in resisting lateral forces is the use of reinforced concrete shear walls in buildings. These walls represent the main elements to resist the lateral forces due to their large strength and stiffness. However, such walls may contain many openings due to functional requirements, and this may largely affect the overall lateral stiffness of them. It is thus of prime importance to quantify the effect of openings on the dynamic performance of the shear walls. SAP2000 structural analysis program is used as a main source after verifying the results. This study is made by using linear elastic analysis. The results are compared to ASCE7-16 code empirical equations for estimating the fundamental period of shear wall structures. Finally, statistical regression is used to fit an equation for estimating the increase in the fundamental period of shear-walled regular structures due to windows openings in the walls.Keywords: Concrete, earthquake-resistant design, finite element, fundamental period, lateral stiffness, linear analysis, modal analysis, rayleigh, SAP2000, shear wall, ASCE7-16.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14571636 Evaluation of Optimum Performance of Lateral Intakes
Authors: Mohammad Reza Pirestani, Hamid Reza Vosoghifar, Pegah Jazayeri
Abstract:
In designing river intakes and diversion structures, it is paramount that the sediments entering the intake are minimized or, if possible, completely separated. Due to high water velocity, sediments can significantly damage hydraulic structures especially when mechanical equipment like pumps and turbines are used. This subsequently results in wasting water, electricity and further costs. Therefore, it is prudent to investigate and analyze the performance of lateral intakes affected by sediment control structures. Laboratory experiments, despite their vast potential and benefits, can face certain limitations and challenges. Some of these include: limitations in equipment and facilities, space constraints, equipment errors including lack of adequate precision or mal-operation, and finally, human error. Research has shown that in order to achieve the ultimate goal of intake structure design – which is to design longlasting and proficient structures – the best combination of sediment control structures (such as sill and submerged vanes) along with parameters that increase their performance (such as diversion angle and location) should be determined. Cost, difficulty of execution and environmental impacts should also be included in evaluating the optimal design. This solution can then be applied to similar problems in the future. Subsequently, the model used to arrive at the optimal design requires high level of accuracy and precision in order to avoid improper design and execution of projects. Process of creating and executing the design should be as comprehensive and applicable as possible. Therefore, it is important that influential parameters and vital criteria is fully understood and applied at all stages of choosing the optimal design. In this article, influential parameters on optimal performance of the intake, advantages and disadvantages, and efficiency of a given design are studied. Then, a multi-criterion decision matrix is utilized to choose the optimal model that can be used to determine the proper parameters in constructing the intake.
Keywords: Diversion structures lateral intake, multi criteria decision making, optimal design, sediment control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22291635 Balanced k-Anonymization
Authors: Sabah S. Al-Fedaghi
Abstract:
The technique of k-anonymization has been proposed to obfuscate private data through associating it with at least k identities. This paper investigates the basic tabular structures that underline the notion of k-anonymization using cell suppression. These structures are studied under idealized conditions to identify the essential features of the k-anonymization notion. We optimize data kanonymization through requiring a minimum number of anonymized values that are balanced over all columns and rows. We study the relationship between the sizes of the anonymized tables, the value k, and the number of attributes. This study has a theoretical value through contributing to develop a mathematical foundation of the kanonymization concept. Its practical significance is still to be investigated.Keywords: Balanced tables, k-anonymization, private data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12231634 Improved Plasmonic Demultiplexer Based on Tapered and Rectangular Slot MIM Waveguide
Authors: Aso Rahimzadegan, Seyyed Poorya Hosseini, Kamran Qaderi
Abstract:
In this paper, we have proposed two novel plasmonic demultiplexing structures based on metal-insulator-metal surfaces which, beside their compact size, have a very good transmission spectrum. The impact of the key internal parameters on the transmission spectrum is numerically analyzed by using the twodimensional (2D) finite difference time domain (FDTD) method. The proposed structures could be used to develop ultra-compact photonic wavelength demultiplexing devices for large-scale photonic integration.
Keywords: Photonic integrated devices, Plasmonics, Metalinsulator- metal (MIM) waveguide, Demultiplexers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20811633 On the Transition of Europe’s Power Sector: Economic Consequences of National Targets
Authors: Geoffrey J. Blanford, Christoph Weissbart
Abstract:
The prospects for the European power sector indicate that it has to almost fully decarbonize in order to reach the economy-wide target of CO2-emission reduction. We apply the EU-REGEN model to explain the penetration of RES from an economic perspective, their spatial distribution, and the complementary role of conventional generation technologies. Furthermore, we identify economic consequences of national energy and climate targets. Our study shows that onshore wind power will be the most crucial generation technology for the future European power sector. Its geographic distribution is driven by resource quality. Gas power will be the major conventional generation technology for backing-up wind power. Moreover, a complete phase out of coal power proves to be not economically optimal. The paper demonstrates that existing national targets have a negative impact, especially on the German region with higher prices and lower revenues. The remaining regions profit are hardly affected. We encourage an EU-wide coordination on the expansion of wind power with harmonized policies. Yet, this requires profitable market structures for both, RES and conventional generation technologies.
Keywords: European decarbonization pathway, power market investment, public policies, technology choice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9231632 Novel CFRP Adhesive Joints and Structures for Offshore Application
Authors: M. R. Abusrea, Shiyi Jiang, Dingding Chen, Kazuo Arakawa
Abstract:
Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: one is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture.Keywords: Adhesive joints, CFRP, VARTM, resin transfer molding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18701631 The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-Based Nanocomposite Hollow Sphere Structures
Authors: M. Amirjan
Abstract:
In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano-alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength, and energy absorption. It was found that, as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400μm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.Keywords: Hollow sphere structure foam, nanocomposite, t/D (thickness, diameter), powder metallurgy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23991630 Nonlinear Solitary Structures of Electron Plasma Waves in a Finite Temperature Quantum Plasma
Authors: Swarniv Chandra, Basudev Ghosh
Abstract:
Nonlinear solitary structures of electron plasma waves have been investigated by using nonlinear quantum fluid equations for electrons with an arbitrary temperature. It is shown that the electron degeneracy parameter has significant effects on the linear and nonlinear properties of electron plasma waves. Depending on its value both compressive and rarefactive solitons can be excited in the model plasma under consideration.Keywords: Electron Plasma Waves, Finite Temperature Model, Modulational Instability, Quantum Plasma, Solitary structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17261629 A Wavelet-Based Watermarking Method Exploiting the Contrast Sensitivity Function
Authors: John N. Ellinas, Panagiotis Kenterlis
Abstract:
The efficiency of an image watermarking technique depends on the preservation of visually significant information. This is attained by embedding the watermark transparently with the maximum possible strength. The current paper presents an approach for still image digital watermarking in which the watermark embedding process employs the wavelet transform and incorporates Human Visual System (HVS) characteristics. The sensitivity of a human observer to contrast with respect to spatial frequency is described by the Contrast Sensitivity Function (CSF). The strength of the watermark within the decomposition subbands, which occupy an interval on the spatial frequencies, is adjusted according to this sensitivity. Moreover, the watermark embedding process is carried over the subband coefficients that lie on edges where distortions are less noticeable. The experimental evaluation of the proposed method shows very good results in terms of robustness and transparency.
Keywords: Image watermarking, wavelet transform, human visual system, contrast sensitivity function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20921628 Finite Element Analysis for Damped Vibration Properties of Panels Laminated Porous Media
Authors: Y. Kurosawa, T. Yamaguchi
Abstract:
A numerical method is proposed to calculate damping properties for sound-proof structures involving elastic body, viscoelastic body, and porous media. For elastic and viscoelastic body displacement is modeled using conventional finite elements including complex modulus of elasticity. Both effective density and bulk modulus have complex quantities to represent damped sound fields in the porous media. Particle displacement in the porous media is discretised using finite element method. Displacement vectors as common unknown variables are solved under coupled condition between elastic body, viscoelastic body and porous media. Further, explicit expressions of modal loss factor for the mixed structures are derived using asymptotic method. Eigenvalue analysis and frequency responded were calculated for automotive test panel laminated viscoelastic and porous structures using this technique, the results almost agreed with the experimental results.Keywords: Damping, Porous Media, Finite Element Method, Computer Aided Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21311627 Movement Optimization of Robotic Arm Movement Using Soft Computing
Authors: V. K. Banga
Abstract:
Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.
Keywords: Artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17781626 Models and Metamodels for Computer-Assisted Natural Language Grammar Learning
Authors: Evgeny Pyshkin, Maxim Mozgovoy, Vladislav Volkov
Abstract:
The paper follows a discourse on computer-assisted language learning. We examine problems of foreign language teaching and learning and introduce a metamodel that can be used to define learning models of language grammar structures in order to support teacher/student interaction. Special attention is paid to the concept of a virtual language lab. Our approach to language education assumes to encourage learners to experiment with a language and to learn by discovering patterns of grammatically correct structures created and managed by a language expert.
Keywords: Computer-assisted instruction, Language learning, Natural language grammar models, HCI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21931625 Combining ASTER Thermal Data and Spatial-Based Insolation Model for Identification of Geothermal Active Areas
Authors: Khalid Hussein, Waleed Abdalati, Pakorn Petchprayoon, Khaula Alkaabi
Abstract:
In this study, we integrated ASTER thermal data with an area-based spatial insolation model to identify and delineate geothermally active areas in Yellowstone National Park (YNP). Two pairs of L1B ASTER day- and nighttime scenes were used to calculate land surface temperature. We employed the Emissivity Normalization Algorithm which separates temperature from emissivity to calculate surface temperature. We calculated the incoming solar radiation for the area covered by each of the four ASTER scenes using an insolation model and used this information to compute temperature due to solar radiation. We then identified the statistical thermal anomalies using land surface temperature and the residuals calculated from modeled temperatures and ASTER-derived surface temperatures. Areas that had temperatures or temperature residuals greater than 2σ and between 1σ and 2σ were considered ASTER-modeled thermal anomalies. The areas identified as thermal anomalies were in strong agreement with the thermal areas obtained from the YNP GIS database. Also the YNP hot springs and geysers were located within areas identified as anomalous thermal areas. The consistency between our results and known geothermally active areas indicate that thermal remote sensing data, integrated with a spatial-based insolation model, provides an effective means for identifying and locating areas of geothermal activities over large areas and rough terrain.
Keywords: Thermal remote sensing, insolation model, land surface temperature, geothermal anomalies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10251624 An Experiment on Personal Archiving and Retrieving Image System (PARIS)
Authors: Pei-Jeng Kuo, Terumasa Aoki, Hiroshi Yasuda
Abstract:
PARIS (Personal Archiving and Retrieving Image System) is an experiment personal photograph library, which includes more than 80,000 of consumer photographs accumulated within a duration of approximately five years, metadata based on our proposed MPEG-7 annotation architecture, Dozen Dimensional Digital Content (DDDC), and a relational database structure. The DDDC architecture is specially designed for facilitating the managing, browsing and retrieving of personal digital photograph collections. In annotating process, we also utilize a proposed Spatial and Temporal Ontology (STO) designed based on the general characteristic of personal photograph collections. This paper explains PRAIS system.Keywords: Ontology, Databases and Information Retrieval, MPEG-7, Spatial-Temporal, Digital Library Designs l, metadata, Semantic Web, semi-automatic annotation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11171623 3D Numerical Analysis of Stone Columns Reinforced with Horizontal and Vertical Geosynthetic Materials
Authors: R. Ziaie Moayed, A. Khalili
Abstract:
Improvement and reinforcement of soils with poor strength and engineering properties for constructing low height structures or structures such as liquid storage tanks, bridge columns, and heavy structures have necessitated applying particular techniques. Stone columns are among the well-known methods applied in such soils. This method provides an economically justified way for improving engineering properties of soft clay and loose sandy soils. Stone column implementation in these soils increases their bearing capacity and reduces the settlement of foundation build on them. In the present study, the finite difference based FLAC3D software was used to investigate the performance and effect of soil reinforcement through stone columns without lining and those with geosynthetic lining with different levels of stiffness in horizontal and vertical modes in clayey soils. The results showed that soil improvement using stone columns with lining in vertical and horizontal modes results in improvement of bearing capacity and foundation settlement.
Keywords: Bearing capacity, FLAC3D, geosynthetic, settlement, stone column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10851622 Using Molecular Dynamics to Assess Mechanical Properties of PAN-Based Carbon Fibers Comprising Imperfect Crystals with Amorphous Structures
Authors: A. Ito, S. Okamoto
Abstract:
We constructed an atomic structure model for a PAN-based carbon fiber containing amorphous structures using molecular dynamics methods. It was found that basic physical properties such as crystallinity, Young’s modulus, and thermal conductivity of our model were nearly identical to those of real carbon fibers. We then obtained the tensile strength of a carbon fiber, which has no macro defects. We finally determined that the limitation of the tensile strength was 19 GPa.
Keywords: Amorphous, carbon fiber, molecular dynamics, tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3003