Search results for: shortest path length estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2461

Search results for: shortest path length estimation

2161 The Use of Minor Setups in an EPQ Model with Constrained Production Period Length

Authors: Behrouz Afshar Nadjafi

Abstract:

Extensive research has been devoted to economic production quantity (EPQ) problem. However, no attention has been paid to problems where production period length is constrained. In this paper, we address the problem of deciding the optimal production quantity and the number of minor setups within each cycle, in which, production period length is constrained but a minor setup is possible for pass the constraint. A mathematical model is developed and Iterated Local Search (ILS) is proposed to solve this problem. Finally, solution procedure illustrated with a numerical example and results are analyzed.

Keywords: EPQ, Inventory control, minor setup, ILS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
2160 IMM based Kalman Filter for Channel Estimation in MB OFDM Systems

Authors: C.Ramesh, V.Vaidehi

Abstract:

Ultra-wide band (UWB) communication is one of the most promising technologies for high data rate wireless networks for short range applications. This paper proposes a blind channel estimation method namely IMM (Interactive Multiple Model) Based Kalman algorithm for UWB OFDM systems. IMM based Kalman filter is proposed to estimate frequency selective time varying channel. In the proposed method, two Kalman filters are concurrently estimate the channel parameters. The first Kalman filter namely Static Model Filter (SMF) gives accurate result when the user is static while the second Kalman filter namely the Dynamic Model Filter (DMF) gives accurate result when the receiver is in moving state. The static transition matrix in SMF is assumed as an Identity matrix where as in DMF, it is computed using Yule-Walker equations. The resultant filter estimate is computed as a weighted sum of individual filter estimates. The proposed method is compared with other existing channel estimation methods.

Keywords: Channel estimation, Kalman filter, UWB, Channel model, AR model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
2159 On the Modeling and State Estimation for Dynamic Power System

Authors: A. Thabet, M. Boutayeb, M. N. Abdelkrim

Abstract:

This paper investigates a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation (DAE) models using the extended Kalman filter. The method involves the use of a transformation from a DAE to ordinary differential equation (ODE). A relevant dynamic power system model using decoupled techniques will be proposed. The estimation technique consists of a state estimator based on the EKF technique as well as the local stability analysis. High performances are illustrated through a simulation study applied on IEEE 13 buses test system.

Keywords: Power system, Dynamic decoupled model, Extended Kalman Filter, Convergence analysis, Time computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737
2158 Patient-Specific Modeling Algorithm for Medical Data Based on AUC

Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper

Abstract:

Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.

Keywords: Approach instance-based, area Under the ROC Curve, Patient-specific Decision Path, clinical predictions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
2157 Estimation of Skew Angle in Binary Document Images Using Hough Transform

Authors: Nandini N., Srikanta Murthy K., G. Hemantha Kumar

Abstract:

This paper includes two novel techniques for skew estimation of binary document images. These algorithms are based on connected component analysis and Hough transform. Both these methods focus on reducing the amount of input data provided to Hough transform. In the first method, referred as word centroid approach, the centroids of selected words are used for skew detection. In the second method, referred as dilate & thin approach, the selected characters are blocked and dilated to get word blocks and later thinning is applied. The final image fed to Hough transform has the thinned coordinates of word blocks in the image. The methods have been successful in reducing the computational complexity of Hough transform based skew estimation algorithms. Promising experimental results are also provided to prove the effectiveness of the proposed methods.

Keywords: Dilation, Document processing, Hough transform, Optical Character Recognition, Skew estimation, and Thinning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3266
2156 Estimation of Time -Varying Linear Regression with Unknown Time -Volatility via Continuous Generalization of the Akaike Information Criterion

Authors: Elena Ezhova, Vadim Mottl, Olga Krasotkina

Abstract:

The problem of estimating time-varying regression is inevitably concerned with the necessity to choose the appropriate level of model volatility - ranging from the full stationarity of instant regression models to their absolute independence of each other. In the stationary case the number of regression coefficients to be estimated equals that of regressors, whereas the absence of any smoothness assumptions augments the dimension of the unknown vector by the factor of the time-series length. The Akaike Information Criterion is a commonly adopted means of adjusting a model to the given data set within a succession of nested parametric model classes, but its crucial restriction is that the classes are rigidly defined by the growing integer-valued dimension of the unknown vector. To make the Kullback information maximization principle underlying the classical AIC applicable to the problem of time-varying regression estimation, we extend it onto a wider class of data models in which the dimension of the parameter is fixed, but the freedom of its values is softly constrained by a family of continuously nested a priori probability distributions.

Keywords: Time varying regression, time-volatility of regression coefficients, Akaike Information Criterion (AIC), Kullback information maximization principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
2155 Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach

Authors: D. Tedesco, G. Feletti, P. Trucco

Abstract:

The present study aims to develop a Decision Support System (DSS) to support operational decisions in Emergency Medical Service (EMS) systems regarding the assignment of medical emergency requests to Emergency Departments (ED). This problem is called “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of a first phase of review of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a mission. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the travelling time and to free-up the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs also considering the expected time performance in the subsequent phases of the process, such as the case mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to compare different hospital selection policies. The model was implemented with the AnyLogic software and finally validated on a realistic case. The hospital selection policy that returned the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, based on a retrospective estimation of the TTP, and a dynamic approach, focused on a predictive estimation of the TTP which is determined with a constantly updated Winters forecasting model. Findings reveal that considering the minimization of TTP is the best hospital selection policy. It allows to significantly reducing service throughput times in the ED with a negligible increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms on TTP estimation, than a retrospective approach. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance.

Keywords: Emergency medical services, hospital selection, discrete event simulation, forecast model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233
2154 Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Based on the DCS-DCSOMP Algorithm

Authors: Linyu Wang, Furui Huo, Jianhong Xiang

Abstract:

The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit (SOMP) algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low Signal-to-Noise Ratio (SNR) stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms.

Keywords: OFDM, doubly selective, channel estimation, compressed sensing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371
2153 Model Based Monitoring Using Integrated Data Validation, Simulation and Parameter Estimation

Authors: Reza Hayati, Maryam Sadi, Saeid Shokri, Mehdi Ahmadi Marvast, Saeid Hassan Boroojerdi, Amin Hamzavi Abedi

Abstract:

Efficient and safe plant operation can only be achieved if the operators are able to monitor all key process parameters. Instrumentation is used to measure many process variables, like temperatures, pressures, flow rates, compositions or other product properties. Therefore Performance monitoring is a suitable tool for operators. In this paper, we integrate rigorous simulation model, data reconciliation and parameter estimation to monitor process equipments and determine key performance indicator (KPI) of them. The applied method here has been implemented in two case studies.

Keywords: Data Reconciliation, Measurement, Optimization, Parameter Estimation, Performance Monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
2152 Study on Radio Link Availability in Millimeter Wave Range

Authors: Boncho G. Bonev, Kliment N. Angelov, Emil S. Altimirski

Abstract:

In this paper, the link quality in SHF and EHF ranges are studied. In order to achieve high data rate higher frequencies must be used – centimeter waves (SHF), millimeter waves (EHF) or optical range. However, there are significant problem when a radio link work in that diapason – rain attenuation and attenuation in earth-s atmosphere. Based on statistical rain rates data for Bulgaria, the link availability can be determined, depending on the working frequency, the path length and the Power Budget of the link. For the calculations of rain attenuation and atmosphere-s attenuation the ITU recommendations are used.

Keywords: rain attenuation, atmospheric gaseous attenuation, link availability, link breaking probability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
2151 Dynamic Network Routing Method Based on Chromosome Learning

Authors: Xun Liang

Abstract:

In this paper, we probe into the traffic assignment problem by the chromosome-learning-based path finding method in simulation, which is to model the driver' behavior in the with-in-a-day process. By simply making a combination and a change of the traffic route chromosomes, the driver at the intersection chooses his next route. The various crossover and mutation rules are proposed with extensive examples.

Keywords: Chromosome learning, crossover, mutation, traffic path finding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
2150 An Event Based Approach to Extract the Run Time Execution Path of BPEL Process for Monitoring QoS in the Cloud

Authors: Rima Grati, Khouloud Boukadi, Hanene Ben-Abdallah

Abstract:

Due to the dynamic nature of the Cloud, continuous monitoring of QoS requirements is necessary to manage the Cloud computing environment. The process of QoS monitoring and SLA violation detection consists of: collecting low and high level information pertinent to the service, analyzing the collected information, and taking corrective actions when SLA violations are detected. In this paper, we detail the architecture and the implementation of the first step of this process. More specifically, we propose an event-based approach to obtain run time information of services developed as BPEL processes. By catching particular events (i.e., the low level information), our approach recognizes the run-time execution path of a monitored service and uses the BPEL execution patterns to compute QoS of the composite service (i.e., the high level information).

Keywords: Monitoring of Web service composition, Cloud environment, Run-time extraction of execution path of BPEL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
2149 Density Estimation using Generalized Linear Model and a Linear Combination of Gaussians

Authors: Aly Farag, Ayman El-Baz, Refaat Mohamed

Abstract:

In this paper we present a novel approach for density estimation. The proposed approach is based on using the logistic regression model to get initial density estimation for the given empirical density. The empirical data does not exactly follow the logistic regression model, so, there will be a deviation between the empirical density and the density estimated using logistic regression model. This deviation may be positive and/or negative. In this paper we use a linear combination of Gaussian (LCG) with positive and negative components as a model for this deviation. Also, we will use the expectation maximization (EM) algorithm to estimate the parameters of LCG. Experiments on real images demonstrate the accuracy of our approach.

Keywords: Logistic regression model, Expectationmaximization, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
2148 An Improved Integer Frequency Offset Estimator using the P1 Symbol for OFDM System

Authors: Yong-An Jung, Young-Hwan You

Abstract:

This paper suggests an improved integer frequency offset (IFO) estimation scheme using P1 symbol for orthogonal frequency division multiplexing (OFDM) based the second generation terrestrial digital video broadcasting (DVB-T2) system. Proposed IFO estimator is designed by a low-complexity blind IFO estimation scheme, which is implemented with complex additions. Also, we propose active carriers (ACs) selection scheme in order to prevent performance degradation in blind IFO estimation. The simulation results show that under the AWGN and TU6 channels, the proposed method has low complexity than conventional method and almost similar performance in comparison with the conventional method.

Keywords: OFDM, DVB-T2, P1 symbol, ACs, IFO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
2147 Factors of Effective Business Software Systems Development and Enhancement Projects Work Effort Estimation

Authors: Beata Czarnacka-Chrobot

Abstract:

Majority of Business Software Systems (BSS) Development and Enhancement Projects (D&EP) fail to meet criteria of their effectiveness, what leads to the considerable financial losses. One of the fundamental reasons for such projects- exceptionally low success rate are improperly derived estimates for their costs and time. In the case of BSS D&EP these attributes are determined by the work effort, meanwhile reliable and objective effort estimation still appears to be a great challenge to the software engineering. Thus this paper is aimed at presenting the most important synthetic conclusions coming from the author-s own studies concerning the main factors of effective BSS D&EP work effort estimation. Thanks to the rational investment decisions made on the basis of reliable and objective criteria it is possible to reduce losses caused not only by abandoned projects but also by large scale of overrunning the time and costs of BSS D&EP execution.

Keywords: Benchmarking data, business software systems development and enhancement projects, effort estimation, software engineering economics, software functional size measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
2146 Evaluation of a Bio-Mechanism by Graphed Static Equilibrium Forces

Authors: A.Y. Bani Hashim, N.A. Abu Osman, W.A.B. Wan Abas, L. Abdul Latif

Abstract:

The unique structural configuration found in human foot allows easy walking. Similar movement is hard to imitate even for an ape. It is obvious that human ambulation relates to the foot structure itself. Suppose the bones are represented as vertices and the joints as edges. This leads to the development of a special graph that represents human foot. On a footprint there are point-ofcontacts which have contact with the ground. It involves specific vertices. Theoretically, for an ideal ambulation, these points provide reactions onto the ground or the static equilibrium forces. They are arranged in sequence in form of a path. The ambulating footprint follows this path. Having the human foot graph and the path crossbred, it results in a representation that describes the profile of an ideal ambulation. This profile cites the locations where the point-of-contact experience normal reaction forces. It highlights the significant of these points.

Keywords: Ambulation, edge, foot, graph, vertex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157
2145 A Robust Frequency Offset Estimator for Orthogonal Frequency Division Multiplexing

Authors: Keunhong Chae, Seokho Yoon

Abstract:

We address the integer frequency offset (IFO) estimation under the influence of the timing offset (TO) in orthogonal frequency division multiplexing (OFDM) systems. Incorporating the IFO and TO into the symbol set used to represent the received OFDM symbol, we investigate the influence of the TO on the IFO, and then, propose a combining method between two consecutive OFDM correlations, reducing the influence. The proposed scheme has almost the same complexity as that of the conventional schemes, whereas it does not need the TO knowledge contrary to the conventional schemes. From numerical results it is confirmed that the proposed scheme is insensitive to the TO, consequently, yielding an improvement of the IFO estimation performance over the conventional schemes when the TO exists.

Keywords: Estimation, integer frequency offset, OFDM, timing offset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
2144 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain

Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas

Abstract:

Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.

Keywords: Agricultural robot, autonomous control, path-tracking control, tracked mobile robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
2143 Estimation of Bayesian Sample Size for Binomial Proportions Using Areas P-tolerance with Lowest Posterior Loss

Authors: H. Bevrani, N. Najafi

Abstract:

This paper uses p-tolerance with the lowest posterior loss, quadratic loss function, average length criteria, average coverage criteria, and worst outcome criterion for computing of sample size to estimate proportion in Binomial probability function with Beta prior distribution. The proposed methodology is examined, and its effectiveness is shown.

Keywords: Bayesian inference, Beta-binomial Distribution, LPLcriteria, quadratic loss function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
2142 A Propagator Method like Algorithm for Estimation of Multiple Real-Valued Sinusoidal Signal Frequencies

Authors: Sambit Prasad Kar, P.Palanisamy

Abstract:

In this paper a novel method for multiple one dimensional real valued sinusoidal signal frequency estimation in the presence of additive Gaussian noise is postulated. A computationally simple frequency estimation method with efficient statistical performance is attractive in many array signal processing applications. The prime focus of this paper is to combine the subspace-based technique and a simple peak search approach. This paper presents a variant of the Propagator Method (PM), where a collaborative approach of SUMWE and Propagator method is applied in order to estimate the multiple real valued sine wave frequencies. A new data model is proposed, which gives the dimension of the signal subspace is equal to the number of frequencies present in the observation. But, the signal subspace dimension is twice the number of frequencies in the conventional MUSIC method for estimating frequencies of real-valued sinusoidal signal. The statistical analysis of the proposed method is studied, and the explicit expression of asymptotic (large-sample) mean-squared-error (MSE) or variance of the estimation error is derived. The performance of the method is demonstrated, and the theoretical analysis is substantiated through numerical examples. The proposed method can achieve sustainable high estimation accuracy and frequency resolution at a lower SNR, which is verified by simulation by comparing with conventional MUSIC, ESPRIT and Propagator Method.

Keywords: Frequency estimation, peak search, subspace-based method without eigen decomposition, quadratic convex function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
2141 Adhesion Performance According to Lateral Reinforcement Method of Textile

Authors: Jungbhin You, Taekyun Kim, Jongho Park, Sungnam Hong, Sun-Kyu Park

Abstract:

Reinforced concrete has been mainly used in construction field because of excellent durability. However, it may lead to reduction of durability and safety due to corrosion of reinforcement steels according to damage of concrete surface. Recently, research of textile is ongoing to complement weakness of reinforced concrete. In previous research, only experiment of longitudinal length were performed. Therefore, in order to investigate the adhesion performance according to the lattice shape and the embedded length, the pull-out test was performed on the roving with parameter of the number of lateral reinforcement, the lateral reinforcement length and the lateral reinforcement spacing. As a result, the number of lateral reinforcement and the lateral reinforcement length did not significantly affect the load variation depending on the adhesion performance, and only the load analysis results according to the reinforcement spacing are affected.

Keywords: Adhesion performance, lateral reinforcement, pull-out test, textile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1131
2140 A Linear Use Case Based Software Cost Estimation Model

Authors: Hasan.O. Farahneh, Ayman A. Issa

Abstract:

Software development is moving towards agility with use cases and scenarios being used for requirements stories. Estimates of software costs are becoming even more important than before as effects of delays is much larger in successive short releases context of agile development. Thus, this paper reports on the development of new linear use case based software cost estimation model applicable in the very early stages of software development being based on simple metric. Evaluation showed that accuracy of estimates varies between 43% and 55% of actual effort of historical test projects. These results outperformed those of wellknown models when applied in the same context. Further work is being carried out to improve the performance of the proposed model when considering the effect of non-functional requirements.

Keywords: Metrics, Software Cost Estimation, Use Cases

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
2139 A New Multi-Target, Multi-Agent Search-and-Rescue Path Planning Approach

Authors: Jean Berger, Nassirou Lo, Martin Noel

Abstract:

Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.

Keywords: Search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
2138 Influence of Number Parallels Paths of a Winding on Overvoltage in the Asynchronous Motors Fed by PWM- converters

Authors: Belassel Mohand-Tahar

Abstract:

This work is devoted to the calculation of the undulatory parameters and the study of the influence of te number parallel path of a winding on overvoltage compared to the frame and between turns (sections) in a multiturn random winding of an asynchronous motors supplied with PWM- converters.

Keywords: Asynchronous Motors, Parallel path, PWMconverters, Undulatory process, Undulatory parameters, Undulatory voltage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
2137 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator

Authors: K. Kouzi

Abstract:

In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.

Keywords: Direct torque control, dual stator induction motor, fuzzy logic estimation, stator resistance adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
2136 Generalized Maximal Ratio Combining as a Supra-optimal Receiver Diversity Scheme

Authors: Jean-Pierre Dubois, Rania Minkara, Rafic Ayoubi

Abstract:

Maximal Ratio Combining (MRC) is considered the most complex combining technique as it requires channel coefficients estimation. It results in the lowest bit error rate (BER) compared to all other combining techniques. However the BER starts to deteriorate as errors are introduced in the channel coefficients estimation. A novel combining technique, termed Generalized Maximal Ratio Combining (GMRC) with a polynomial kernel, yields an identical BER as MRC with perfect channel estimation and a lower BER in the presence of channel estimation errors. We show that GMRC outperforms the optimal MRC scheme in general and we hereinafter introduce it to the scientific community as a new “supraoptimal" algorithm. Since diversity combining is especially effective in small femto- and pico-cells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to IP-based 4th generation networks.

Keywords: Bit error rate, femto-internet cells, generalized maximal ratio combining, signal-to-scattering noise ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
2135 Feature Vector Fusion for Image Based Human Age Estimation

Authors: D. Karthikeyan, G. Balakrishnan

Abstract:

Human faces, as important visual signals, express a significant amount of nonverbal info for usage in human-to-human communication. Age, specifically, is more significant among these properties. Human age estimation using facial image analysis as an automated method which has numerous potential real‐world applications. In this paper, an automated age estimation framework is presented. Support Vector Regression (SVR) strategy is utilized to investigate age prediction. This paper depicts a feature extraction taking into account Gray Level Co-occurrence Matrix (GLCM), which can be utilized for robust face recognition framework. It applies GLCM operation to remove the face's features images and Active Appearance Models (AAMs) to assess the human age based on image. A fused feature technique and SVR with GA optimization are proposed to lessen the error in age estimation.

Keywords: Support vector regression, feature extraction, gray level co-occurrence matrix, active appearance models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
2134 Vehicle Velocity Estimation for Traffic Surveillance System

Authors: H. A. Rahim, U. U. Sheikh, R. B. Ahmad, A. S. M. Zain

Abstract:

This paper describes an algorithm to estimate realtime vehicle velocity using image processing technique from the known camera calibration parameters. The presented algorithm involves several main steps. First, the moving object is extracted by utilizing frame differencing technique. Second, the object tracking method is applied and the speed is estimated based on the displacement of the object-s centroid. Several assumptions are listed to simplify the transformation of 2D images from 3D real-world images. The results obtained from the experiment have been compared to the estimated ground truth. From this experiment, it exhibits that the proposed algorithm has achieved the velocity accuracy estimation of about ± 1.7 km/h.

Keywords: camera calibration, object tracking, velocity estimation, video image processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4456
2133 Biomarkers in a Post-Stroke Population: Allied to Health Care in Brazil

Authors: M. Ricardo Lang, A. Costa, I. Iesbik, K. Haag, L. Trindade Buffara, O. Reimann Junior, C. Auswaldt Steclan

Abstract:

Stroke affects not only the individual, but has significant impacts on the social and family context. Therefore, it is necessary to know the peculiarities of each region, in order to contribute to regional public health policies effectively. Thus, the present study discusses biomarkers in a post-stroke population, admitted to a stroke unit (U-stroke) of reference in the southern region of Brazil. Biomarkers were analyzed, such as age, length of stay, mortality rate, survival time, risk factors and family history of stroke in patients after ischemic stroke. In this studied population, comparing men and women, it was identified that men were more affected than women, and the average age of women affected was higher, as they also had the highest mortality rate and the shortest hospital stay. The risk factors identified here were according to the global scenario; with systemic arterial hypertension (SAH) being the most frequent and those associated with sedentary lifestyle in women the most frequent (dyslipidemia, heart disease and obesity). In view of this, the importance of studies that characterize populations regionally is evident, strengthening the strategic planning of policies in favor of health care.

Keywords: Biomarkers, population, stroke, sex, stroke unit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602
2132 Exons and Introns Classification in Human and Other Organisms

Authors: Benjamin Y. M. Kwan, Jennifer Y. Y. Kwan, Hon Keung Kwan

Abstract:

In the paper, the relative performances on spectral classification of short exon and intron sequences of the human and eleven model organisms is studied. In the simulations, all combinations of sixteen one-sequence numerical representations, four threshold values, and four window lengths are considered. Sequences of 150-base length are chosen and for each organism, a total of 16,000 sequences are used for training and testing. Results indicate that an appropriate combination of one-sequence numerical representation, threshold value, and window length is essential for arriving at top spectral classification results. For fixed-length sequences, the precisions on exon and intron classification obtained for different organisms are not the same because of their genomic differences. In general, precision increases as sequence length increases.

Keywords: Exons and introns classification, Human genome, Model organism genome, Spectral analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062