Search results for: Rule Extraction
804 On the Interactive Search with Web Documents
Authors: Mario Kubek, Herwig Unger
Abstract:
Due to the large amount of information in the World Wide Web (WWW, web) and the lengthy and usually linearly ordered result lists of web search engines that do not indicate semantic relationships between their entries, the search for topically similar and related documents can become a tedious task. Especially, the process of formulating queries with proper terms representing specific information needs requires much effort from the user. This problem gets even bigger when the user's knowledge on a subject and its technical terms is not sufficient enough to do so. This article presents the new and interactive search application DocAnalyser that addresses this problem by enabling users to find similar and related web documents based on automatic query formulation and state-ofthe- art search word extraction. Additionally, this tool can be used to track topics across semantically connected web documents.
Keywords: DocAnalyser, interactive web search, search word extraction, query formulation, source topic detection, topic tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648803 Voice Command Recognition System Based on MFCC and VQ Algorithms
Authors: Mahdi Shaneh, Azizollah Taheri
Abstract:
The goal of this project is to design a system to recognition voice commands. Most of voice recognition systems contain two main modules as follow “feature extraction" and “feature matching". In this project, MFCC algorithm is used to simulate feature extraction module. Using this algorithm, the cepstral coefficients are calculated on mel frequency scale. VQ (vector quantization) method will be used for reduction of amount of data to decrease computation time. In the feature matching stage Euclidean distance is applied as similarity criterion. Because of high accuracy of used algorithms, the accuracy of this voice command system is high. Using these algorithms, by at least 5 times repetition for each command, in a single training session, and then twice in each testing session zero error rate in recognition of commands is achieved.Keywords: MFCC, Vector quantization, Vocal tract, Voicecommand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3157802 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features
Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi
Abstract:
Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.
Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257801 Cross Signal Identification for PSG Applications
Authors: Carmen Grigoraş, Victor Grigoraş, Daniela Boişteanu
Abstract:
The standard investigational method for obstructive sleep apnea syndrome (OSAS) diagnosis is polysomnography (PSG), which consists of a simultaneous, usually overnight recording of multiple electro-physiological signals related to sleep and wakefulness. This is an expensive, encumbering and not a readily repeated protocol, and therefore there is need for simpler and easily implemented screening and detection techniques. Identification of apnea/hypopnea events in the screening recordings is the key factor for the diagnosis of OSAS. The analysis of a solely single-lead electrocardiographic (ECG) signal for OSAS diagnosis, which may be done with portable devices, at patient-s home, is the challenge of the last years. A novel artificial neural network (ANN) based approach for feature extraction and automatic identification of respiratory events in ECG signals is presented in this paper. A nonlinear principal component analysis (NLPCA) method was considered for feature extraction and support vector machine for classification/recognition. An alternative representation of the respiratory events by means of Kohonen type neural network is discussed. Our prospective study was based on OSAS patients of the Clinical Hospital of Pneumology from Iaşi, Romania, males and females, as well as on non-OSAS investigated human subjects. Our computed analysis includes a learning phase based on cross signal PSG annotation.Keywords: Artificial neural networks, feature extraction, obstructive sleep apnea syndrome, pattern recognition, signalprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541800 Outlier Pulse Detection and Feature Extraction for Wrist Pulse Analysis
Authors: Bhaskar Thakker, Anoop Lal Vyas
Abstract:
Wrist pulse analysis for identification of health status is found in Ancient Indian as well as Chinese literature. The preprocessing of wrist pulse is necessary to remove outlier pulses and fluctuations prior to the analysis of pulse pressure signal. This paper discusses the identification of irregular pulses present in the pulse series and intricacies associated with the extraction of time domain pulse features. An approach of Dynamic Time Warping (DTW) has been utilized for the identification of outlier pulses in the wrist pulse series. The ambiguity present in the identification of pulse features is resolved with the help of first derivative of Ensemble Average of wrist pulse series. An algorithm for detecting tidal and dicrotic notch in individual wrist pulse segment is proposed.Keywords: Wrist Pulse Segment, Ensemble Average, Dynamic Time Warping (DTW), Pulse Similarity Vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093799 Effect of Hemicellulase on Extraction of Essential Oil from Algerian Artemisia campestris
Authors: Khalida Boutemak, Nasssima Benali, Nadji Moulai-Mostefa
Abstract:
Effect of enzyme on the yield and chemical composition of Artemisia campestris essential oil is reported in the present study. It was demonstrated that enzyme facilitated the extraction of essential oil with increase in oil yield and did not affect any noticeable change in flavour profile of the volatile oil. Essential oil was tested for antibacterial activity using Escherichia coli; which was extremely sensitive against control with the largest inhibition (29mm), whereas Staphylococcus aureus was the most sensitive against essential oil obtained from enzymatic pre-treatment with the largest inhibition zone (25mm). The antioxidant activity of the essential oil with hemicellulase pre-treatment (EO2) and control sample (EO1) was determined through reducing power. It was significantly lower than the standard drug (vitamin C) in this order: vitamin C˃EO2˃EO1.Keywords: Artemisia campestris, enzyme pre-treatment, hemicellulase, antibacterial activity, antioxidant activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555798 Remarks on Some Properties of Decision Rules
Authors: Songlin Yang, Ying Ge
Abstract:
This paper shows that some properties of the decision rules in the literature do not hold by presenting a counterexample. We give sufficient and necessary conditions under which these properties are valid. These results will be helpful when one tries to choose the right decision rules in the research of rough set theory.Keywords: set, Decision table, Decision rule, coverage factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413797 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053796 OHASD: The First On-Line Arabic Sentence Database Handwritten on Tablet PC
Authors: Randa I. M. Elanwar, Mohsen A. Rashwan, Samia A. Mashali
Abstract:
In this paper we present the first Arabic sentence dataset for on-line handwriting recognition written on tablet pc. The dataset is natural, simple and clear. Texts are sampled from daily newspapers. To collect naturally written handwriting, forms are dictated to writers. The current version of our dataset includes 154 paragraphs written by 48 writers. It contains more than 3800 words and more than 19,400 characters. Handwritten texts are mainly written by researchers from different research centers. In order to use this dataset in a recognition system word extraction is needed. In this paper a new word extraction technique based on the Arabic handwriting cursive nature is also presented. The technique is applied to this dataset and good results are obtained. The results can be considered as a bench mark for future research to be compared with.Keywords: Arabic, Handwriting recognition, on-line dataset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056795 A New Biologically Inspired Pattern Recognition Spproach for Face Recognition
Authors: V. Kabeer, N.K.Narayanan
Abstract:
This paper reports a new pattern recognition approach for face recognition. The biological model of light receptors - cones and rods in human eyes and the way they are associated with pattern vision in human vision forms the basis of this approach. The functional model is simulated using CWD and WPD. The paper also discusses the experiments performed for face recognition using the features extracted from images in the AT & T face database. Artificial Neural Network and k- Nearest Neighbour classifier algorithms are employed for the recognition purpose. A feature vector is formed for each of the face images in the database and recognition accuracies are computed and compared using the classifiers. Simulation results show that the proposed method outperforms traditional way of feature extraction methods prevailing for pattern recognition in terms of recognition accuracy for face images with pose and illumination variations.
Keywords: Face recognition, Image analysis, Wavelet feature extraction, Pattern recognition, Classifier algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677794 Performance Evaluation of ROI Extraction Models from Stationary Images
Authors: K.V. Sridhar, Varun Gunnala, K.S.R Krishna Prasad
Abstract:
In this paper three basic approaches and different methods under each of them for extracting region of interest (ROI) from stationary images are explored. The results obtained for each of the proposed methods are shown, and it is demonstrated where each method outperforms the other. Two main problems in ROI extraction: the channel selection problem and the saliency reversal problem are discussed and how best these two are addressed by various methods is also seen. The basic approaches are 1) Saliency based approach 2) Wavelet based approach 3) Clustering based approach. The saliency approach performs well on images containing objects of high saturation and brightness. The wavelet based approach performs well on natural scene images that contain regions of distinct textures. The mean shift clustering approach partitions the image into regions according to the density distribution of pixel intensities. The experimental results of various methodologies show that each technique performs at different acceptable levels for various types of images.Keywords: clustering, ROI, saliency, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409793 Extraction of Temporal Relation by the Creation of Historical Natural Disaster Archive
Authors: Suguru Yoshioka, Seiichi Tani, Seinosuke Toda
Abstract:
In historical science and social science, the influence of natural disaster upon society is a matter of great interest. In recent years, some archives are made through many hands for natural disasters, however it is inefficiency and waste. So, we suppose a computer system to create a historical natural disaster archive. As the target of this analysis, we consider newspaper articles. The news articles are considered to be typical examples that prescribe the temporal relations of affairs for natural disaster. In order to do this analysis, we identify the occurrences in newspaper articles by some index entries, considering the affairs which are specific to natural disasters, and show the temporal relation between natural disasters. We designed and implemented the automatic system of “extraction of the occurrences of natural disaster" and “temporal relation table for natural disaster."Keywords: Database, digital library, corpus, historical natural disaster, temporal relation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404792 Fast Facial Feature Extraction and Matching with Artificial Face Models
Authors: Y. H. Tsai, Y. W. Chen
Abstract:
Facial features are frequently used to represent local properties of a human face image in computer vision applications. In this paper, we present a fast algorithm that can extract the facial features online such that they can give a satisfying representation of a face image. It includes one step for a coarse detection of each facial feature by AdaBoost and another one to increase the accuracy of the found points by Active Shape Models (ASM) in the regions of interest. The resulted facial features are evaluated by matching with artificial face models in the applications of physiognomy. The distance measure between the features and those in the fate models from the database is carried out by means of the Hausdorff distance. In the experiment, the proposed method shows the efficient performance in facial feature extractions and online system of physiognomy.Keywords: Facial feature extraction, AdaBoost, Active shapemodel, Hausdorff distance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812791 Leaching Behaviour of a Low-grade South African Nickel Laterite
Authors: Catherine K. Thubakgale, Richard K.K. Mbaya, Kaby Kabongo
Abstract:
The morphology, mineralogical and chemical composition of a low-grade nickel ore from Mpumalanga, South Africa, were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF), respectively. The ore was subjected to atmospheric agitation leaching using sulphuric acid to investigate the effects of acid concentration, leaching temperature, leaching time and particle size on extraction of nickel and cobalt. Analyses results indicated the ore to be a saprolitic nickel laterite belonging to the serpentine group of minerals. Sulphuric acid was found to be able to extract nickel from the ore. Increased acid concentration and temperature only produced low amounts of nickel but improved cobalt extraction. As high as 77.44% Ni was achieved when leaching a -106+75μm fraction with 4.0M acid concentration at 25oC. The kinetics of nickel leaching from the saprolitic ore were studied and the activation energy was determined to be 18.16kJ/mol. This indicated that nickel leaching reaction was diffusion controlled.Keywords: Laterite, sulphuric acid, atmospheric leaching, nickel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3316790 The Use of Microorganisms in the Bioleaching of Soils Polluted with Heavy Metals
Authors: I. M. Sur, A. M. Chirila-Babau, T. Gabor, V. Micle
Abstract:
This paper shows researches in order to extract Cr, Cu and Ni from the polluted soils. Research is based on preliminary studies regarding the usage of Thiobacillus ferrooxidans bacterium (9K medium) for bioleaching of soil polluted with heavy metal (Cu, Cr and Ni). The microorganisms (Thiobacillus ferooxidans) selected directly from polluted soil samples were used in this experimental work. Soil samples used in the experimental research were taken from an area polluted with heavy metals from Romania. The soil samples are subjected to the cleaning process using the 9K medium solution (20 mL and 40 mL, respectively), stirred 200 rpm for 20 hours at a controlled temperature (30 ˚C). During the experiment (0, 2, 4, 8 and 20 h), liquid samples have been extracted and analyzed using the Atomic Absorption Spectrophotometer AA-6800 (AAS) in order to determine the Cr, Cu and Ni concentration. Experiments led to the conclusion that these soils can be depolluted by bioleaching, being a biological treatment method involving the use of microorganisms to favor the extraction of Cr, Cu and Ni from polluted soils.
Keywords: Bioleaching, extraction, microorganisms, polluted soil, Thiobacillus ferooxidans.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 969789 Further Investigations on Higher Mathematics Scores for Chinese University Students
Authors: Xun Ge
Abstract:
Recently, X. Ge and J. Qian investigated some relations between higher mathematics scores and calculus scores (resp. linear algebra scores, probability statistics scores) for Chinese university students. Based on rough-set theory, they established an information system S = (U,CuD,V, f). In this information system, higher mathematics score was taken as a decision attribute and calculus score, linear algebra score, probability statistics score were taken as condition attributes. They investigated importance of each condition attribute with respective to decision attribute and strength of each condition attribute supporting decision attribute. In this paper, we give further investigations for this issue. Based on the above information system S = (U, CU D, V, f), we analyze the decision rules between condition and decision granules. For each x E U, we obtain support (resp. strength, certainty factor, coverage factor) of the decision rule C —>x D, where C —>x D is the decision rule induced by x in S = (U, CU D, V, f). Results of this paper gives new analysis of on higher mathematics scores for Chinese university students, which can further lead Chinese university students to raise higher mathematics scores in Chinese graduate student entrance examination.
Keywords: Rough set, support, strength, certainty factor, coverage factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369788 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)
Authors: Wafa' S.Al-Sharafat, Reyadh Naoum
Abstract:
Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672787 On-line Speech Enhancement by Time-Frequency Masking under Prior Knowledge of Source Location
Authors: Min Ah Kang, Sangbae Jeong, Minsoo Hahn
Abstract:
This paper presents the source extraction system which can extract only target signals with constraints on source localization in on-line systems. The proposed system is a kind of methods for enhancing a target signal and suppressing other interference signals. But, the performance of proposed system is superior to any other methods and the extraction of target source is comparatively complete. The method has a beamforming concept and uses an improved time-frequency (TF) mask-based BSS algorithm to separate a target signal from multiple noise sources. The target sources are assumed to be in front and test data was recorded in a reverberant room. The experimental results of the proposed method was evaluated by the PESQ score of real-recording sentences and showed a noticeable speech enhancement.
Keywords: Beam forming, Non-stationary noise reduction, Source separation, TF mask.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022786 Optimization of Some Process Parameters to Produce Raisin Concentrate in Khorasan Region of Iran
Authors: Peiman Ariaii, Hamid Tavakolipour, Mohsen Pirdashti, Rabehe Izadi Amoli
Abstract:
Raisin Concentrate (RC) are the most important products obtained in the raisin processing industries. These RC products are now used to make the syrups, drinks and confectionery productions and introduced as natural substitute for sugar in food applications. Iran is a one of the biggest raisin exporter in the world but unfortunately despite a good raw material, no serious effort to extract the RC has been taken in Iran. Therefore, in this paper, we determined and analyzed affected parameters on extracting RC process and then optimizing these parameters for design the extracting RC process in two types of raisin (round and long) produced in Khorasan region. Two levels of solvent (1:1 and 2:1), three levels of extraction temperature (60°C, 70°C and 80°C), and three levels of concentration temperature (50°C, 60°C and 70°C) were the treatments. Finally physicochemical characteristics of the obtained concentrate such as color, viscosity, percentage of reduction sugar, acidity and the microbial tests (mould and yeast) were counted. The analysis was performed on the basis of factorial in the form of completely randomized design (CRD) and Duncan's multiple range test (DMRT) was used for the comparison of the means. Statistical analysis of results showed that optimal conditions for production of concentrate is round raisins when the solvent ratio was 2:1 with extraction temperature of 60°C and then concentration temperature of 50°C. Round raisin is cheaper than the long one, and it is more economical to concentrate production. Furthermore, round raisin has more aromas and the less color degree with increasing the temperature of concentration and extraction. Finally, according to mentioned factors the concentrate of round raisin is recommended.Keywords: Raisin concentrate, optimization, process parameters, round raisin, Iran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600785 Very-high-Precision Normalized Eigenfunctions for a Class of Schrödinger Type Equations
Authors: Amna Noreen , Kare Olaussen
Abstract:
We demonstrate that it is possible to compute wave function normalization constants for a class of Schr¨odinger type equations by an algorithm which scales linearly (in the number of eigenfunction evaluations) with the desired precision P in decimals.
Keywords: Eigenvalue problems, bound states, trapezoidal rule, poisson resummation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2854784 Analysis of Roasted and Ground Grains on the Seoul (Korea) Market for Their Contaminants of Aflatoxins, Ochratoxin A and Fusarium Toxins by LC-MS/MS
Authors: So-young Jung, Bu-chuhl Choe, Gi-young Shin, Jung-hun Kim, Young-zoo Chae
Abstract:
A sensitive and specific method for quantitative determination of aflatoxins(B1, B2, G1,G2), deoxynivalenol, fumonisin(B1,B2), ochratoxin A, zearalenone, T-2 and HT-2 in roasted and ground grains using liquid chromatography combined with tandem mass spectrometry. A double extraction using a phosphate buffer solution followed by methanol was applied to achieve effective co extraction of 11 mycotoxins. A multitoxin immunoaffinity column for all these mycotoxins was used to clean up the extract. The LODs of mycotoxins were 0.1~6.1 μg/kg, LOQs were 0.3~18.4 μg/kg. Forty seven samples collected from Seoul (Korea) for mycotoxin contamination monitoring. The results showed that the occurrence of zearalenone and deoxynivalenol were frequent. Zearalenone was detected in all samples and deoxynivalenol was detected in 80.9 % samples in the range 0.626 ~ 29.264 μg/kg and N.D ~ 48.332 μg/kg respectively. Fumonisins and ochratoxin A were detected in 46.8% samples and 17 % samples respectively, aflatoxins and T-2/HT-2 toxins were not detected all samples.Keywords: LC-MS/MS, mycotoxins, roasted and ground grains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996783 Performance Evaluation of an Ontology-Based Arabic Sentiment Analysis
Authors: Salima Behdenna, Fatiha Barigou, Ghalem Belalem
Abstract:
Due to the quick increase in the volume of Arabic opinions posted on various social media, Arabic sentiment analysis has become one of the most important areas of research. Compared to English, there is very little works on Arabic sentiment analysis, in particular aspect-based sentiment analysis (ABSA). In ABSA, aspect extraction is the most important task. In this paper, we propose a semantic ABSA approach for standard Arabic reviews to extract explicit aspect terms and identify the polarity of the extracted aspects. The proposed approach was evaluated using HAAD datasets. Experiments showed that the proposed approach achieved a good level of performance compared with baseline results. The F-measure was improved by 19% for the aspect term extraction tasks and 55% aspect term polarity task.
Keywords: Sentiment analysis, opinion mining, Arabic, aspect level, opinion, polarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463782 Over-Height Vehicle Detection in Low Headroom Roads Using Digital Video Processing
Authors: Vahid Khorramshahi, Alireza Behrad, Neeraj K. Kanhere
Abstract:
In this paper we present a new method for over-height vehicle detection in low headroom streets and highways using digital video possessing. The accuracy and the lower price comparing to present detectors like laser radars and the capability of providing extra information like speed and height measurement make this method more reliable and efficient. In this algorithm the features are selected and tracked using KLT algorithm. A blob extraction algorithm is also applied using background estimation and subtraction. Then the world coordinates of features that are inside the blobs are estimated using a noble calibration method. As, the heights of the features are calculated, we apply a threshold to select overheight features and eliminate others. The over-height features are segmented using some association criteria and grouped using an undirected graph. Then they are tracked through sequential frames. The obtained groups refer to over-height vehicles in a scene.Keywords: Feature extraction, over-height vehicle detection, traffic monitoring, vehicle tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2828781 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features
Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.
Keywords: Data mining, Korean linguistic feature, literary fiction, relationship extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795780 The Autoregresive Analysis for Wind Turbine Signal Postprocessing
Authors: Daniel Pereiro, Felix Martinez, Iker Urresti, Ana Gomez Gonzalez
Abstract:
Today modern simulations solutions in the wind turbine industry have achieved a high degree of complexity and detail in result. Limitations exist when it is time to validate model results against measurements. Regarding Model validation it is of special interest to identify mode frequencies and to differentiate them from the different excitations. A wind turbine is a complex device and measurements regarding any part of the assembly show a lot of noise. Input excitations are difficult or even impossible to measure due to the stochastic nature of the environment. Traditional techniques for frequency analysis or features extraction are widely used to analyze wind turbine sensor signals, but have several limitations specially attending to non stationary signals (Events). A new technique based on autoregresive analysis techniques is introduced here for a specific application, a comparison and examples related to different events in the wind turbine operations are presented.
Keywords: Wind turbine, signal processing, mode extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567779 A Hypercube Social Feature Extraction and Multipath Routing in Delay Tolerant Networks
Authors: S. Balaji, M. Rajaram, Y. Harold Robinson, E. Golden Julie
Abstract:
Delay Tolerant Networks (DTN) which have sufficient state information include trajectory and contact information, to protect routing efficiency. However, state information is dynamic and hard to obtain without a global and/or long-term collection process. To deal with these problems, the internal social features of each node are introduced in the network to perform the routing process. This type of application is motivated from several human contact networks where people contact each other more frequently if they have more social features in common. Two unique processes were developed for this process; social feature extraction and multipath routing. The routing method then becomes a hypercube–based feature matching process. Furthermore, the effectiveness of multipath routing is evaluated and compared to that of single-path routing.
Keywords: Delay tolerant networks, entropy, human contact networks, hyper cubes, multipath Routing, social features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305778 Deep iCrawl: An Intelligent Vision-Based Deep Web Crawler
Authors: R.Anita, V.Ganga Bharani, N.Nityanandam, Pradeep Kumar Sahoo
Abstract:
The explosive growth of World Wide Web has posed a challenging problem in extracting relevant data. Traditional web crawlers focus only on the surface web while the deep web keeps expanding behind the scene. Deep web pages are created dynamically as a result of queries posed to specific web databases. The structure of the deep web pages makes it impossible for traditional web crawlers to access deep web contents. This paper, Deep iCrawl, gives a novel and vision-based approach for extracting data from the deep web. Deep iCrawl splits the process into two phases. The first phase includes Query analysis and Query translation and the second covers vision-based extraction of data from the dynamically created deep web pages. There are several established approaches for the extraction of deep web pages but the proposed method aims at overcoming the inherent limitations of the former. This paper also aims at comparing the data items and presenting them in the required order.Keywords: Crawler, Deep web, Web Database
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156777 Arabic Light Stemmer for Better Search Accuracy
Authors: Sahar Khedr, Dina Sayed, Ayman Hanafy
Abstract:
Arabic is one of the most ancient and critical languages in the world. It has over than 250 million Arabic native speakers and more than twenty countries having Arabic as one of its official languages. In the past decade, we have witnessed a rapid evolution in smart devices, social network and technology sector which led to the need to provide tools and libraries that properly tackle the Arabic language in different domains. Stemming is one of the most crucial linguistic fundamentals. It is used in many applications especially in information extraction and text mining fields. The motivation behind this work is to enhance the Arabic light stemmer to serve the data mining industry and leverage it in an open source community. The presented implementation works on enhancing the Arabic light stemmer by utilizing and enhancing an algorithm that provides an extension for a new set of rules and patterns accompanied by adjusted procedure. This study has proven a significant enhancement for better search accuracy with an average 10% improvement in comparison with previous works.Keywords: Arabic data mining, Arabic Information extraction, Arabic Light stemmer, Arabic stemmer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496776 GA Based Optimal Feature Extraction Method for Functional Data Classification
Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai
Abstract:
Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555775 Supercritical Carbon Dioxide Extraction of Phenolics and Tocopherols Enriched Oil from Wheat Bran
Authors: Kyung-Tae Kwon, Md. Salim Uddin, Go-Woon Jung, Jeong-Eun Sim, Byung-Soo Chun
Abstract:
Supercritical carbon dioxide (SC-CO2) was used as a solvent to extract oil from wheat bran. Extractions were carried out in a semi-batch process at temperatures ranging from 40 to 60ºC and pressures ranging from 10 to 30 MPa, with a carbon dioxide (CO2) flow rate of 26.81 g/min. The oil obtained from wheat bran at different extraction conditions was quantitatively measured to investigate the solubility of oil in SC-CO2. The solubility of wheat bran oil was found to be enhanced in high temperature and pressure. The composition of fatty acids in wheat bran oil was measured by gas chromatography (GC). Linoleic, palmitic, oleic and γ-linolenic acid were the major fatty acids of wheat bran oil. Tocopherol contents in oil were analyzed by high performance liquid chromatography (HPLC). The highest amount of phenolics and tocopherols (α and β) were found at temperature of 60ºC and pressure of 30 MPa.Keywords: Supercritical carbon dioxide, Tocopherols, Totalphenolic content, Wheat bran oil
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2567