Search results for: time based DNA codes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15452

Search results for: time based DNA codes

12272 Real Time Monitoring of Long Slender Shaft by Distributed-Lumped Modeling Techniques

Authors: Sina Babadi, K. M. Ebrahimi

Abstract:

The aim of this paper is to determine the stress levels at the end of a long slender shaft such as a drilling assembly used in the oil or gas industry using a mathematical model in real-time. The torsional deflection experienced by this type of drilling shaft (about 4 KM length and 20 cm diameter hollow shaft with a thickness of 1 cm) can only be determined using a distributed modeling technique. The main objective of this project is to calculate angular velocity and torque at the end of the shaft by TLM method and also analyzing of the behavior of the system by transient response. The obtained result is compared with lumped modeling technique the importance of these results will be evident only after the mentioned comparison. Two systems have different transient responses and in this project because of the length of the shaft transient response is very important.

Keywords: Distributed Lumped modeling, Lumped modeling, Drill string, Angular Velocity, Torque.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
12271 Construction of a Low Carbon Eco-City Index System Based on CAS Theory: A Case of Hexi Newtown in Nanjing, China

Authors: Xu Tao, Yilun Xu, Dingwei Xiang, Yaofei Sun

Abstract:

The practice of urban planning and construction based on the concept of the “low carbon eco-city” has been universally accepted by the academic community in response to urban issues such as population, resources, environment, and social development. Based on this, the current article first analyzes the concepts of low carbon eco-city, then builds a complex adaptive system (CAS) theory based on Chinese traditional philosophical thinking, and analyzes the adaptive relationship between material and non-material elements. A three-dimensional evaluation model of natural ecology, economic low carbon, and social harmony was constructed. Finally, the construction of a low carbon eco-city index system in Hexi Newtown of Nanjing was used as an example to verify the effectiveness of the research results; this paradigm provides a new way to achieve a low carbon eco-city system.

Keywords: Complex adaptive system, low carbon ecology, index system, model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 998
12270 Modular Data and Calculation Framework for a Technology-Based Mapping of the Manufacturing Process According to the Value Stream Management Approach

Authors: Tim Wollert, Fabian Behrendt

Abstract:

Value Stream Management (VSM) is a widely used methodology in the context of Lean Management for improving end-to-end material and information flows from a supplier to a customer from a company’s perspective. Whereas the design principles, e.g. Pull, value-adding, customer-orientation and further ones are still valid against the background of an increasing digitalized and dynamic environment, the methodology itself for mapping a value stream is characterized as time- and resource-intensive due to the high degree of manual activities. The digitalization of processes in the context of Industry 4.0 enables new opportunities to reduce these manual efforts and make the VSM approach more agile. The paper at hand aims at providing a modular data and calculation framework, utilizing the available business data, provided by information and communication technologies for automizing the value stream mapping process with focus on the manufacturing process.

Keywords: Industry 4.0, lean management 4.0, value stream management 4.0, value stream mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 369
12269 Scientometrics Analysis of Food Supply Chain Risk Assessment Literature Based on Web of Science Record 1996-2014

Authors: Mohsen Shirani, Shadi Asadzandi, Micaela Demichela

Abstract:

This paper presents the results of a study to assess crucial aspects and the strength of the scientific basis of a typically interdisciplinary, applied field: food supply chain risk assessment research. Our approach is based on an advanced scientometrics analysis that is a quantitative study of the disciplines of science based on published literature to measure interdisciplinary. This paper aims to describe the quantity and quality of the publication trends in food supply chain risk assessment. The publication under study was composed of 266 articles from database web of science. The results were analyzed based on date of publication, type of document, language of the documents, source of publications, subject areas, authors and their affiliations, and the countries involved in developing the articles.

Keywords: Food Supply Chain, Risk Assessment, Scientometrics, Web of science.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
12268 Speaker Identification Using Admissible Wavelet Packet Based Decomposition

Authors: Mangesh S. Deshpande, Raghunath S. Holambe

Abstract:

Mel Frequency Cepstral Coefficient (MFCC) features are widely used as acoustic features for speech recognition as well as speaker recognition. In MFCC feature representation, the Mel frequency scale is used to get a high resolution in low frequency region, and a low resolution in high frequency region. This kind of processing is good for obtaining stable phonetic information, but not suitable for speaker features that are located in high frequency regions. The speaker individual information, which is non-uniformly distributed in the high frequencies, is equally important for speaker recognition. Based on this fact we proposed an admissible wavelet packet based filter structure for speaker identification. Multiresolution capabilities of wavelet packet transform are used to derive the new features. The proposed scheme differs from previous wavelet based works, mainly in designing the filter structure. Unlike others, the proposed filter structure does not follow Mel scale. The closed-set speaker identification experiments performed on the TIMIT database shows improved identification performance compared to other commonly used Mel scale based filter structures using wavelets.

Keywords: Speaker identification, Wavelet transform, Feature extraction, MFCC, GMM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
12267 Therapeutic Product Preparation Bioprocess Modeling

Authors: Mihai Caramihai, Irina Severin, Ana Aurelia Chirvase, Adrian Onu, Cristina Tanase, Camelia Ungureanu

Abstract:

An immunomodulator bioproduct is prepared in a batch bioprocess with a modified bacterium Pseudomonas aeruginosa. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The optimal bioprocess parameters were determined: temperature – 37 0C, agitation speed - 300 rpm, aeration rate – 40 L/min, pressure – 0.5 bar, Dow Corning Antifoam M-max. 4 % of the medium volume, duration - 6 hours. This kind of bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying. The aim of the paper is to present (by comparison) different models based on experimental data. The analysis criteria were modeling error and convergence rate. The estimated values and the modeling analysis were done by using the Table Curve 2D. The preliminary conclusions indicate Andrews-s model with a maximum specific growth rate of the bacterium in the range of 0.8 h-1.

Keywords: bioprocess modeling, Pseudomonas aeruginosa, kinetic models,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
12266 A Hybrid Recommendation System Based On Association Rules

Authors: Ahmed Mohammed K. Alsalama

Abstract:

Recommendation systems are widely used in e-commerce applications. The engine of a current recommendation system recommends items to a particular user based on user preferences and previous high ratings. Various recommendation schemes such as collaborative filtering and content-based approaches are used to build a recommendation system. Most of current recommendation systems were developed to fit a certain domain such as books, articles, and movies. We propose1 a hybrid framework recommendation system to be applied on two dimensional spaces (User × Item) with a large number of Users and a small number of Items. Moreover, our proposed framework makes use of both favorite and non-favorite items of a particular user. The proposed framework is built upon the integration of association rules mining and the content-based approach. The results of experiments show that our proposed framework can provide accurate recommendations to users.

Keywords: Data Mining, Association Rules, Recommendation Systems, Hybrid Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3989
12265 Development of Risk-Based Ambient Air Quality Standards in the Russian Federation on the Basis of Risk Assessment Procedures Harmonized with International Approaches

Authors: Nina V. Zaitseva, Pavel Z. Shur, Nina G. Atiskova

Abstract:

Nowadays harmonization of sanitary and hygienic standards of environmental quality with international standards is crucial part of integration of Russia into the international community. Harmonization of Russian and international ambient air quality standards may be realized by risk-based standards development. In this paper approaches to risk-based standards development and examples of these approaches implementation are presented.

Keywords: Harmonization, health risk assessment, evolutionary modelling, benchmark level, nickel, manganese.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
12264 Recognition by Online Modeling – a New Approach of Recognizing Voice Signals in Linear Time

Authors: Jyh-Da Wei, Hsin-Chen Tsai

Abstract:

This work presents a novel means of extracting fixedlength parameters from voice signals, such that words can be recognized in linear time. The power and the zero crossing rate are first calculated segment by segment from a voice signal; by doing so, two feature sequences are generated. We then construct an FIR system across these two sequences. The parameters of this FIR system, used as the input of a multilayer proceptron recognizer, can be derived by recursive LSE (least-square estimation), implying that the complexity of overall process is linear to the signal size. In the second part of this work, we introduce a weighting factor λ to emphasize recent input; therefore, we can further recognize continuous speech signals. Experiments employ the voice signals of numbers, from zero to nine, spoken in Mandarin Chinese. The proposed method is verified to recognize voice signals efficiently and accurately.

Keywords: Speech Recognition, FIR system, Recursive LSE, Multilayer Perceptron

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
12263 Improving Carbon Sequestration in Concrete: A Literature Review

Authors: Adedokun D. A., Ndambuki J. M., Salim R. W.

Abstract:

Due to urbanization, trees and plants which covered a great land mass of the earth and are an excellent carbon dioxide (CO2) absorber through photosynthesis are being replaced by several concrete based structures. It is therefore important to have these cement based structures absorb the large volume of carbon dioxide which the trees would have removed from the atmosphere during their useful lifespan. Hence the need for these cement based structures to be designed to serve other useful purposes in addition to shelter. This paper reviews the properties of Sodium carbonate and sugar as admixtures in concrete with respect to improving carbon sequestration in concrete.

Keywords: Carbon sequestration, Sodium carbonate, Sugar, concrete, Carbon dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763
12262 Abnormality Detection of Persons Living Alone Using Daily Life Patterns Obtained from Sensors

Authors: Ippei Kamihira, Takashi Nakajima, Taiyo Matsumura, Hikaru Miura, Takashi Ono

Abstract:

In this research, the goal was construction of a system by which multiple sensors were used to observe the daily life behavior of persons living alone (while respecting their privacy), using this information to judge such conditions as bad physical condition or falling in the home, etc., so that these abnormal conditions can be made known to relatives and third parties. The daily life patterns of persons living alone are expressed by the number of responses of sensors each time that a set time period has elapsed. By comparing data for the prior two weeks, it was possible to judge a situation as “normal” when the person was in good physical condition or as “abnormal” when the person was in bad physical condition.

Keywords: Sensors, Elderly living alone, Abnormality detection, Lifestyle habit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
12261 Multifunctional Barcode Inventory System for Retailing. Are You Ready for It?

Authors: Ling Shi Cai, Leau Yu Beng, Charlie Albert Lasuin, Tan Soo Fun, Chin Pei Yee

Abstract:

This paper explains the development of Multifunctional Barcode Inventory Management System (MBIMS) to manage inventory and stock ordering. Today, most of the retailing market is still manually record their stocks and its effectiveness is quite low. By providing MBIMS, it will bring effectiveness to retailing market in inventory management. MBIMS will not only save time in recording input, output and refilling the inventory stock, but also in calculating remaining stock and provide auto-ordering function. This system is developed through System Development Life Cycle (SDLC) and the flow and structure of the system is fully built based on requirements of a retailing market. Furthermore, this system has been developed from methodical research and study where each part of the system is vigilantly designed. Thus, MBIMS will offer a good solution to the retailing market in achieving effectiveness and efficiency in inventory management.

Keywords: Inventory, Retailing Market, Barcode, Automated Alerting and Ordering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
12260 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation

Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi

Abstract:

This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.

Keywords: Fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583
12259 Rescue Emergency Drone for Fast Response to Medical Emergencies Due to Traffic Accidents

Authors: Anders S. Kristensen, Dewan Ahsan, Saqib Mehmood, Shakeel Ahmed

Abstract:

Traffic accidents are a result of the convergence of hazards, malfunctioning of vehicles and human negligence that have adverse economic and health impacts and effects. Unfortunately, avoiding them completely is very difficult, but with quick response to rescue and first aid, the mortality rate of inflicted persons can be reduced significantly. Smart and innovative technologies can play a pivotal role to respond faster to traffic crash emergencies comparing conventional means of transportation. For instance, Rescue Emergency Drone (RED) can provide faster and real-time crash site risk assessment to emergency medical services, thereby helping them to quickly and accurately assess a situation, dispatch the right equipment and assist bystanders to treat inflicted person properly. To conduct a research in this regard, the case of a traffic roundabout that is prone to frequent traffic accidents on the outskirts of Esbjerg, a town located on western coast of Denmark is hypothetically considered. Along with manual calculations, Emergency Disaster Management Simulation (EDMSIM) has been used to verify the response time of RED from a fire station of the town to the presumed crash site. The results of the study demonstrate the robustness of RED into emergency services to help save lives. 

Keywords: Automated external defibrillator, medical emergency, fire and rescue services, response time, unmanned aerial system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
12258 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner

Authors: Guy Leshem, Ya'acov Ritov

Abstract:

Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.

Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3911
12257 Mathematical Modeling of Human Cardiovascular System: A Lumped Parameter Approach and Simulation

Authors: Ketan Naik, P. H. Bhathawala

Abstract:

The purpose of this work is to develop a mathematical model of Human Cardiovascular System using lumped parameter method. The model is divided in three parts: Systemic Circulation, Pulmonary Circulation and the Heart. The established mathematical model has been simulated by MATLAB software. The innovation of this study is in describing the system based on the vessel diameters and simulating mathematical equations with active electrical elements. Terminology of human physical body and required physical data like vessel’s radius, thickness etc., which are required to calculate circuit parameters like resistance, inductance and capacitance, are proceeds from well-known medical books. The developed model is useful to understand the anatomic of human cardiovascular system and related syndromes. The model is deal with vessel’s pressure and blood flow at certain time.

Keywords: Cardiovascular system, lumped parameter method, mathematical modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3361
12256 Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE

Authors: Rida B. Arieby, Hameed N. Hameed

Abstract:

In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.

Keywords: Strain rate jump tests, Volume Strain, High Density Polyethylene, Large strain, Thermodynamics approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
12255 An Interval-Based Multi-Attribute Decision Making Approach for Electric Utility Resource Planning

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

This paper presents an interval-based multi-attribute decision making (MADM) approach in support of the decision process with imprecise information. The proposed decision methodology is based on the model of linear additive utility function but extends the problem formulation with the measure of composite utility variance. A sample study concerning with the evaluation of electric generation expansion strategies is provided showing how the imprecise data may affect the choice toward the best solution and how a set of alternatives, acceptable to the decision maker (DM), may be identified with certain confidence.

Keywords: Decision Making, Power Generation, ElectricUtilities, Resource Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
12254 Cognitive Landscape of Values – Understanding the Information Contents of Mental Representations

Authors: J. Maksimainen

Abstract:

The values of managers and employees in organizations are phenomena that have captured the interest of researchers at large. Despite this attention, there continues to be a lack of agreement on what values are and how they influence individuals, or how they are constituted in individuals- mind. In this article content-based approach is presented as alternative reference frame for exploring values. In content-based approach human thinking in different contexts is set at the focal point. Differences in valuations can be explained through the information contents of mental representations. In addition to the information contents, attention is devoted to those cognitive processes through which mental representations of values are constructed. Such informational contents are in decisive role for understanding human behavior. By applying content-based analysis to an examination of values as mental representations, it is possible to reach a deeper to the motivational foundation of behaviors, such as decision making in organizational procedures, through understanding the structure and meanings of specific values at play.

Keywords: Content-based Approach, Mental Content, Mental Representations, Organizational values, Values

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
12253 Hybridizing Genetic Algorithm with Biased Chance Local Search

Authors: Mehdi Basikhasteh, Mohamad A. Movafaghpour

Abstract:

This paper explores university course timetabling problem. There are several characteristics that make scheduling and timetabling problems particularly difficult to solve: they have huge search spaces, they are often highly constrained, they require sophisticated solution representation schemes, and they usually require very time-consuming fitness evaluation routines. Thus standard evolutionary algorithms lack of efficiency to deal with them. In this paper we have proposed a memetic algorithm that incorporates the problem specific knowledge such that most of chromosomes generated are decoded into feasible solutions. Generating vast amount of feasible chromosomes makes the progress of search process possible in a time efficient manner. Experimental results exhibit the advantages of the developed Hybrid Genetic Algorithm than the standard Genetic Algorithm.

Keywords: University Course Timetabling, Memetic Algorithm, Biased Chance Assignment, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
12252 Influence Maximization in Dynamic Social Networks and Graphs

Authors: Gkolfo I. Smani, Vasileios Megalooikonomou

Abstract:

Influence and influence diffusion have been studied extensively in social networks. However, most existing literature on this task are limited on static networks, ignoring the fact that the interactions between users change over time. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time is studied. The DM algorithm is an extension of Matrix Influence (MATI) algorithm and solves the Influence Maximization (IM) problem in dynamic networks and is proposed under the Linear Threshold (LT) and Independent Cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.

Keywords: Influence maximization, dynamic social networks, diffusion, social influence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 416
12251 Comparison of Parameterization Methods in Recognizing Spoken Arabic Digits

Authors: Ali Ganoun

Abstract:

This paper proposes evaluation of sound parameterization methods in recognizing some spoken Arabic words, namely digits from zero to nine. Each isolated spoken word is represented by a single template based on a specific recognition feature, and the recognition is based on the Euclidean distance from those templates. The performance analysis of recognition is based on four parameterization features: the Burg Spectrum Analysis, the Walsh Spectrum Analysis, the Thomson Multitaper Spectrum Analysis and the Mel Frequency Cepstral Coefficients (MFCC) features. The main aim of this paper was to compare, analyze, and discuss the outcomes of spoken Arabic digits recognition systems based on the selected recognition features. The results acqired confirm that the use of MFCC features is a very promising method in recognizing Spoken Arabic digits.

Keywords: Speech Recognition, Spectrum Analysis, Burg Spectrum, Walsh Spectrum Analysis, Thomson Multitaper Spectrum, MFCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
12250 Power Saving System in Green Data Center

Authors: Joon-young Jung, Dong-oh Kang, Chang-seok Bae

Abstract:

Power consumption is rapidly increased in data centers because the number of data center is increased and more the scale of data center become larger. Therefore, it is one of key research items to reduce power consumption in data center. The peak power of a typical server is around 250 watts. When a server is idle, it continues to use around 60% of the power consumed when in use, though vendors are putting effort into reducing this “idle" power load. Servers tend to work at only around a 5% to 20% utilization rate, partly because of response time concerns. An average of 10% of servers in their data centers was unused. In those reason, we propose dynamic power management system to reduce power consumption in green data center. Experiment result shows that about 55% power consumption is reduced at idle time.

Keywords: Data Center, Green IT, Management Server, Power Saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
12249 High Performance VLSI Architecture of 2D Discrete Wavelet Transform with Scalable Lattice Structure

Authors: Juyoung Kim, Taegeun Park

Abstract:

In this paper, we propose a fully-utilized, block-based 2D DWT (discrete wavelet transform) architecture, which consists of four 1D DWT filters with two-channel QMF lattice structure. The proposed architecture requires about 2MN-3N registers to save the intermediate results for higher level decomposition, where M and N stand for the filter length and the row width of the image respectively. Furthermore, the proposed 2D DWT processes in horizontal and vertical directions simultaneously without an idle period, so that it computes the DWT for an N×N image in a period of N2(1-2-2J)/3. Compared to the existing approaches, the proposed architecture shows 100% of hardware utilization and high throughput rates. To mitigate the long critical path delay due to the cascaded lattices, we can apply the pipeline technique with four stages, while retaining 100% of hardware utilization. The proposed architecture can be applied in real-time video signal processing.

Keywords: discrete wavelet transform, VLSI architecture, QMF lattice filter, pipelining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
12248 A New Extended Group Mutual Exclusion Algorithm with Low Message Complexity in Distributed Systems

Authors: S. Dehghan, A.M. Rahmani

Abstract:

The group mutual exclusion (GME) problem is an interesting generalization of the mutual exclusion problem. In the group mutual exclusion, multiple processes can enter a critical section simultaneously if they belong to the same group. In the extended group mutual exclusion, each process is a member of multiple groups at the same time. As a result, after the process by selecting a group enter critical section, other processes can select the same group with its belonging group and can enter critical section at the moment, so that it avoids their unnecessary blocking. This paper presents a quorum-based distributed algorithm for the extended group mutual exclusion problem. The message complexity of our algorithm is O(4Q ) in the best case and O(5Q) in the worst case, where Q is a quorum size.

Keywords: Group Mutual Exclusion (GME), Extended GME, Distributed systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
12247 Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network

Authors: Siavash Asadi Ghajarloo

Abstract:

Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy.

Keywords: Bayesian Networks, Data mining, GECRframework, Predicting political risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
12246 Green Building Materials: Hemp Oil Based Biocomposites

Authors: Nathan W. Manthey, Francisco Cardona, Gaston M. Francucci, Thiru Aravinthan

Abstract:

Novel acrylated epoxidized hemp oil (AEHO) based bioresins were successfully synthesised, characterized and applied to biocomposites reinforced with woven jute fibre. Characterisation of the synthesised AEHO consisted of acid number titrations and FTIR spectroscopy to assess the success of the acrylation reaction. Three different matrices were produced (vinylester (VE), 50/50 blend of AEHO/VE and 100% AEHO) and reinforced with jute fibre to form three different types of biocomposite samples. Mechanical properties in the form of flexural and interlaminar shear strength (ILSS) were investigated and compared for the different samples. Results from the mechanical tests showed that AEHO and 50/50 based neat bioresins displayed lower flexural properties compared with the VE samples. However when applied to biocomposites and compared with VE based samples, AEHO biocomposites demonstrated comparable flexural performance and improved ILSS. These results are attributed to improved fibre-matrix interfacial adhesion due to surface-chemical compatibility between the natural fibres and bioresin.

Keywords: Biocomposite, hemp oil based bioresin, green building materials, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3472
12245 Hand Gesture Detection via EmguCV Canny Pruning

Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae

Abstract:

Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.

Keywords: Canny pruning, hand recognition, machine learning, skin tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
12244 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: Hybrid electric vehicle, hybrid energy storage, battery state estimation, ate of charge, state of health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051
12243 Sensor Monitoring of the Concentrations of Different Gases Present in Synthesis of Ammonia Based On Multi-Scale Entropy and Multivariate Statistics

Authors: S. Aouabdi, M. Taibi

Abstract:

This paper presents powerful techniques for the development of a new monitoring method based on multi-scale entropy (MSE) in order to characterize the behaviour of the concentrations of different gases present in the synthesis of Ammonia and soft-sensor based on Principal Component Analysis (PCA).

Keywords: Ammonia synthesis, concentrations of different gases, soft sensor, multi-scale entropy, multivariate statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149