Search results for: Real-Time Spatial Big Data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7894

Search results for: Real-Time Spatial Big Data

4774 Investigating the Vehicle-Bicyclists Conflicts Using LIDAR Sensor Technology at Signalized Intersections

Authors: Alireza Ansariyar, Mansoureh Jeihani

Abstract:

Light Detection and Ranging (LiDAR) sensors is capable of recording traffic data including the number of passing vehicles and bicyclists, the speed of vehicles and bicyclists, and the number of conflicts among both road users. In order to collect real-time traffic data and investigate the safety of different road users, a LiDAR sensor was installed at Cold Spring Ln – Hillen Rd intersection in Baltimore city. The frequency and severity of collected real-time conflicts were analyzed and the results highlighted that 122 conflicts were recorded over a 10-month time interval from May 2022 to February 2023. By employing an image-processing algorithm, a safety Measure of Effectiveness (MOE) aims to identify critical zones for bicyclists upon entering each respective zone at the signalized intersection. Considering the trajectory of conflicts, the results of analysis demonstrated that conflicts in the northern approach (zone N) are more frequent and severe. Additionally, sunny weather is more likely to cause severe vehicle-bike conflicts.

Keywords: LiDAR sensor, Post Encroachment Time threshold, vehicle-bike conflicts, measure of effectiveness, weather condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143
4773 Comparison of Stochastic Point Process Models of Rainfall in Singapore

Authors: Y. Lu, X. S. Qin

Abstract:

Extensive rainfall disaggregation approaches have been developed and applied in climate change impact studies such as flood risk assessment and urban storm water management.In this study, five rainfall models that were capable ofdisaggregating daily rainfall data into hourly one were investigated for the rainfall record in theChangi Airport, Singapore. The objectives of this study were (i) to study the temporal characteristics of hourly rainfall in Singapore, and (ii) to evaluate the performance of variousdisaggregation models. The used models included: (i) Rectangular pulse Poisson model (RPPM), (ii) Bartlett-Lewis Rectangular pulse model (BLRPM), (iii) Bartlett-Lewis model with 2 cell types (BL2C), (iv) Bartlett-Lewis Rectangular with cell depth distribution dependent on duration (BLRD), and (v) Neyman-Scott Rectangular pulse model (NSRPM). All of these models werefitted using hourly rainfall data ranging from 1980 to 2005 (which was obtained from Changimeteorological station).The study results indicated that the weight scheme of inversely proportional variance could deliver more accurateoutputs for fitting rainfall patterns in tropical areas, and BLRPM performedrelatively better than other disaggregation models.

Keywords: Rainfall disaggregation, statistical properties, poisson processed, Bartlett-Lewis model, Neyman-Scott model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
4772 Surveying Earthquake Vulnerabilities of District 13 of Kabul City, Afghanistan

Authors: Mohsen Mohammadi, Toshio Fujimi

Abstract:

High population and irregular urban development in Kabul city, Afghanistan's capital, are among factors that increase its vulnerability to earthquake disasters (on top of its location in a high seismic region); this can lead to widespread economic loss and casualties. This study aims to evaluate earthquake risks in Kabul's 13th district based on scientific data. The research data, which include hazard curves of Kabul, vulnerability curves, and a questionnaire survey through sampling in district 13, have been incorporated to develop risk curves. To estimate potential casualties, we used a set of M parameters in a model developed by Coburn and Spence. The results indicate that in the worst case scenario, more than 90% of district 13, which comprises mostly residential buildings, is exposed to high risk; this may lead to nearly 1000 million USD economic loss and 120 thousand casualties (equal to 25.88% of the 13th district's population) for a nighttime earthquake. To reduce risks, we present the reconstruction of the most vulnerable buildings, which are primarily adobe and masonry buildings. A comparison of risk reduction between reconstructing adobe and masonry buildings indicates that rebuilding adobe buildings would be more effective.

Keywords: Earthquake risk evaluation, Kabul, mitigation, vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
4771 Biosynthesis and Metabolism of Anthraquinone Derivatives

Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina

Abstract:

In review the generalized data about biosynthetic routs formation anthraquinone molecules in natural cells. The basic possibilities of various ways of biosynthesis of different quinoid substances are shown.

Keywords: Anthraquinones, biochemical evolution, biosynthesis, metabolism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3966
4770 In vitro Cytotoxic and Genotoxic Effects of Arsenic Trioxide on Human Keratinocytes

Authors: H. Bouaziz, M. Sefi, J. de Lapuente, M. Borras, N. Zeghal

Abstract:

Although, arsenic trioxide has been the subject of toxicological research, in vitro cytotoxicity and genotoxicity studies using relevant cell models and uniform methodology are not well elucidated. Hence, the aim of the present study was to evaluate the cytotoxicity and genotoxicity induced by arsenic trioxide in human keratinocytes (HaCaT) using the MTT [3-(4, 5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide] and alkaline single cell gel electrophoresis (Comet) assays, respectively. Human keratinocytes were treated with different doses of arsenic trioxide for 4 h prior to cytogenetic assessment. Data obtained from the MTT assay indicated that arsenic trioxide significantly reduced the viability of HaCaT cells in a dose-dependent manner, showing an IC50 value of 34.18 ± 0.6 μM. Data generated from the comet assay also indicated a significant dose-dependent increase in DNA damage in HaCaT cells associated with arsenic trioxide exposure. We observed a significant increase in comet tail length and tail moment, showing an evidence of arsenic trioxide -induced genotoxic damage in HaCaT cells. This study confirms that the comet assay is a sensitive and effective method to detect DNA damage caused by arsenic.

Keywords: Arsenic trioxide, cytotoxixity, genotoxicity, HaCaT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
4769 Designing Information Systems in Education as Prerequisite for Successful Management Results

Authors: Vladimir Simovic, Matija Varga, Tonco Marusic

Abstract:

This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.

Keywords: Designing, education management, information systems, matrix technology, process affinity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
4768 STEP Implementation on Turn-mill Manufacturing Environment

Authors: Ahmad Majdi Bin Abdul-Rani, Mesfin Gizaw, Yusri Yusof

Abstract:

Researches related to standard product model and development of neutral manufacturing interfaces for numerical control machines becomes a significant topic since the last 25 years. In this paper, a detail description of STEP implementation on turnmill manufacturing has been discussed. It shows requirements of information contents from ISO14649 data model. It covers to describe the design of STEP-NC framework applicable to turn-mill manufacturing. In the framework, EXPRESS-G and UML modeling tools are used to depict the information contents of the system and established the bases of information model requirement. A product and manufacturing data model applicable for STEP compliant manufacturing. The next generation turn-mill operations requirements have been represented by a UML diagram. An object oriented classes of ISO1449 has been developed on Visual Basic dot NET platform for binding the static information model represented by the UML diagram. An architect of the proposed system implementation has been given on the bases of the design and manufacturing module of STEP-NC interface established. Finally, a part 21 file process plan generated for an illustration of turn-mill components.

Keywords: CAPP, ISO14649, Product modeling, STEP-NC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
4767 Retarding Potential Analyzer Design and Result Analysis for Ion Energy Distribution Measurement of the Thruster Plume in the Laboratory

Authors: Ma Ya-li, Tang Fu-jun, Xue Yu-xiong, Chen Yi-feng, Gao Xin, Wang Yi, Tian Kai, Yan Ze-dong

Abstract:

Plasma plume will be produced and arrive at spacecraft when the electric thruster operates on orbit. It-s important to characterize the thruster plasma parameters because the plume has significant effects or hazards on spacecraft sub-systems and parts. Through the ground test data of the desired parameters, the major characteristics of the thruster plume will be achieved. Also it is very important for optimizing design of Ion thruster. Retarding Potential Analyzer (RPA) is an effective instrument for plasma ion energy per unit charge distribution measurement. Special RPA should be designed according to certain plume plasma parameters range and feature. In this paper, major principles usable for good RPA design are discussed carefully. Conform to these principles, a four-grid planar electrostatic energy analyzer RPA was designed to avoid false data, and details were discussed including construction, materials, aperture diameter and so on. At the same time, it was designed more suitable for credible and long-duration measurements in the laboratory. In the end, RPA measurement results in the laboratory were given and discussed.

Keywords: Thruster plume ion energy distributions, retarding potential analyzer, ground test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4010
4766 The Relationship between Competency-Based Learning and Learning Efficiency of Media Communication Students at Suan Sunandha Rajabhat University

Authors: Somtop Keawchuer

Abstract:

This research aims to study (1) the relationship between competency-based learning and learning efficiency of new media communication students at Suan Sunandha University (2) the demographic factor effect on learning efficiency of students at Suan Sunandha University. This research method will use quantitative research; data was collected by questionnaires distributed to students from new media communication in management science faculty of Suan Sunandha Rajabhat University for 1340 sample by purposive sampling method. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and inferential statistic including T-test, ANOVA and Pearson correlation for hypothesis testing. The results showed that the competency-based learning in term of ability to communicate, ability to think and solve the problem, life skills and ability to use technology has a significant relationship with learning efficiency in term of the cognitive domain, psychomotor domain and affective domain at the 0.05 level and which is in harmony with the research hypotheses.

Keywords: Competency-based learning, learning efficiency, new media communication students, Suan Sunandha Rajabhat University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179
4765 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access

Authors: T. Wanyama, B. Far

Abstract:

Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.

Keywords: Community water usage, fuzzy logic, irrigation, multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
4764 On Adaptive Optimization of Filter Performance Based on Markov Representation for Output Prediction Error

Authors: Hong Son Hoang, Remy Baraille

Abstract:

This paper addresses the problem of how one can improve the performance of a non-optimal filter. First the theoretical question on dynamical representation for a given time correlated random process is studied. It will be demonstrated that for a wide class of random processes, having a canonical form, there exists a dynamical system equivalent in the sense that its output has the same covariance function. It is shown that the dynamical approach is more effective for simulating and estimating a Markov and non- Markovian random processes, computationally is less demanding, especially with increasing of the dimension of simulated processes. Numerical examples and estimation problems in low dimensional systems are given to illustrate the advantages of the approach. A very useful application of the proposed approach is shown for the problem of state estimation in very high dimensional systems. Here a modified filter for data assimilation in an oceanic numerical model is presented which is proved to be very efficient due to introducing a simple Markovian structure for the output prediction error process and adaptive tuning some parameters of the Markov equation.

Keywords: Statistical simulation, canonical form, dynamical system, Markov and non-Markovian processes, data assimilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
4763 Validating Condition-Based Maintenance Algorithms Through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both Machine Learning and First Principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed from breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems and humans – including asset maintenance operations – in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: Degradation models, ageing, anomaly detection, soft sensor, incremental learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 329
4762 The Bright Side of Organizational Politics as a Driver of Firm Competitiveness: The Mediating Role of Corporate Entrepreneurship

Authors: Monika Kulikowska-Pawlak, Katarzyna Bratnicka-Myśliwiec, Tomasz Ingram

Abstract:

This study seeks to contribute to the literature on firm competitiveness by advancing the perspective of organizational politics that views this process as a driver which creates identifiable differences in firm performance. The hypothesized relationships were tested on the basis of data from 355 Polish medium and large-sized enterprises. Data were analyzed using correlation analysis, EFA and robustness tests. The main result of the conducted analyses proved the coexistence, previously examined in the literature, of corporate entrepreneurship and firm performance. The obtained research findings made it possible to add organizational politics to a wide range of elements determining corporate entrepreneurship, followed by competitive advantage, in addition to antecedents such as strategic leadership, corporate culture, opportunity-oriented resource-based management, etc. Also, the empirical results suggest that four dimensions of organizational politics (dominant coalition, influence exertion, making organizational changes, and information openness) are positively related to firm competitiveness. In addition, these findings seem to underline a supposition that corporate entrepreneurship is an important mediator which strengthens the competitive effects of organizational politics.

Keywords: Corporate entrepreneurship, firm competitiveness organizational politics, sensemaking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934
4761 Ideal Disinfectant Characteristics According Data in Published Literature

Authors: Saimir Heta, Ilma Robo, Rialda Xhizdari, Kers Kapaj

Abstract:

The stability of an ideal disinfectant should be constant regardless of the change in the atmospheric conditions of the environment where it is kept. If the conditions such as temperature or humidity change, it is understood that it will also be necessary to approach possible changes in the holding materials such as plastic or glass bottles with the aim of protecting the disinfectant, for example, from the excessive lighting of the environment, which can also be translated as an increase in the temperature of disinfectant as a fluid. In this study, an attempt was made to find the most recent published data about the best possible combination of disinfectants indicated for use after dental procedures. This purpose of the study was realized by comparing the basic literature that is studied in the field of dentistry by students with the most published data in the literature of recent years about this topic. Each disinfectant is represented by a number called the disinfectant count, in which different factors can influence the increase or reduction of variables whose production remains a specific statistic for a specific disinfectant. The changes in the atmospheric conditions where the disinfectant is deposited and stored in the environment are known to affect the stability of the disinfectant as a fluid; this fact is known and even cited in the leaflets accompanying the manufactured boxes of disinfectants. It is these cares, in the form of advice, which are based not only on the preservation of the disinfectant but also on the application in order to have the desired clinical result. Aldehydes have the highest constant among the types of disinfectants, followed by acids. The lowest value of the constant belongs to the class of glycols, the predecessors of which were the halogens, in which class there are some representatives with disinfection applications. The class of phenols and acids have almost the same intervals of constants. If the goal were to find the ideal disinfectant among the large variety of disinfectants produced, a good starting point would be to find something unchanging or a fixed, unchanging element on the basis of which the comparison can be made properties of different disinfectants. Precisely based on the results of this study, the role of the specific constant according to the specific disinfectant is highlighted. Finding an ideal disinfectant, like finding a medication or the ideal antibiotic, is an ongoing but unattainable goal.

Keywords: Different disinfectants, phenols, aldehydes, specific constant, dental procedures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43
4760 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500

Authors: Mustafa Elfituri, Jonathan Cook

Abstract:

Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.

Keywords: Graph computation, Graph500 benchmark, parallel architectures, parallel programming, workload characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
4759 A New Approach for Predicting and Optimizing Weld Bead Geometry in GMAW

Authors: Farhad Kolahan, Mehdi Heidari

Abstract:

Gas Metal Arc Welding (GMAW) processes is an important joining process widely used in metal fabrication industries. This paper addresses modeling and optimization of this technique using a set of experimental data and regression analysis. The set of experimental data has been used to assess the influence of GMAW process parameters in weld bead geometry. The process variables considered here include voltage (V); wire feed rate (F); torch Angle (A); welding speed (S) and nozzle-to-plate distance (D). The process output characteristics include weld bead height, width and penetration. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the GMAW process parameters. The objective is to determine a suitable set of process parameters that can produce desired bead geometry, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.

Keywords: Weld Bead Geometry, GMAW welding, Processparameters Optimization, Modeling, SA algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
4758 Consumers’ Perceptions of Noncommunicable Diseases and Perceived Product Value Impacts on Healthy Food Purchasing Decisions

Authors: Khatesiree Sripoothon, Usanee Sengpanich, Rattana Sittioum

Abstract:

The objective of this study is to examine the factors influencing consumer purchasing decisions about healthy food. This model consists of two latent variables: Consumer Perception relating to NCDs and Consumer Perceived Product Value. The study was conducted in the northern provinces of Thailand, which are popular with tourists and have received support from the government for health and wellness tourism. A survey was used as the data collection method, and the questionnaire was applied to 385 consumers. An accidental sampling method was used to identify the sample. The statistics of frequency, percentage, mean, and structural equation model were used to analyze the data obtained. Additionally, all factors had a significant positive influence on healthy food purchasing decisions (p<0.001) and were predictive of healthy food purchasing decisions at 46.20% (R2=0.462). Also, these findings seem to underline the supposition that consumer perceptions of NCDs and perceived product value are key variables that strengthen the competitive effects of healthy-friendly business entrepreneurs. Moreover, it reduces the countries' public health costs for treating patients with the disease of NCDs in Thailand.

Keywords: healthy food, perceived product value, perception of noncommunicable diseases, purchasing decisions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 561
4757 ISC–Intelligent Subspace Clustering, A Density Based Clustering Approach for High Dimensional Dataset

Authors: Sunita Jahirabadkar, Parag Kulkarni

Abstract:

Many real-world data sets consist of a very high dimensional feature space. Most clustering techniques use the distance or similarity between objects as a measure to build clusters. But in high dimensional spaces, distances between points become relatively uniform. In such cases, density based approaches may give better results. Subspace Clustering algorithms automatically identify lower dimensional subspaces of the higher dimensional feature space in which clusters exist. In this paper, we propose a new clustering algorithm, ISC – Intelligent Subspace Clustering, which tries to overcome three major limitations of the existing state-of-art techniques. ISC determines the input parameter such as є – distance at various levels of Subspace Clustering which helps in finding meaningful clusters. The uniform parameters approach is not suitable for different kind of databases. ISC implements dynamic and adaptive determination of Meaningful clustering parameters based on hierarchical filtering approach. Third and most important feature of ISC is the ability of incremental learning and dynamic inclusion and exclusions of subspaces which lead to better cluster formation.

Keywords: Density based clustering, high dimensional data, subspace clustering, dynamic parameter setting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
4756 Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model

Authors: A. Kablan

Abstract:

The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high frequency. However, in order to eliminate unnecessary input in the training phase a new event based volatility model was proposed. Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based volatility model provides the ANFIS system with more accurate input and has increased the overall performance of the system.

Keywords: Adaptive Neuro-fuzzy Inference system, High Frequency Trading, Intraday Seasonality Observation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3396
4755 The Impact of Recommendation Sources on Online Purchase Intentions: The Moderating Effects of Gender and Perceived Risk

Authors: Chiao-Chen Chang, Yang-Chieh Chin

Abstract:

This study examines the issue of recommendation sources from the perspectives of gender and consumers- perceived risk, and validates a model for the antecedents of consumer online purchases. The method of obtaining quantitative data was that of the instrument of a survey questionnaire. Data were collected via questionnaires from 396 undergraduate students aged 18-24, and a multiple regression analysis was conducted to identify causal relationships. Empirical findings established the link between recommendation sources (word-of-mouth, advertising, and recommendation systems) and the likelihood of making online purchases and demonstrated the role of gender and perceived risk as moderators in this context. The results showed that the effects of word-of-mouth on online purchase intentions were stronger than those of advertising and recommendation systems. In addition, female consumers have less experience with online purchases, so they may be more likely than males to refer to recommendations during the decision-making process. The findings of the study will help marketers to address the recommendation factor which influences consumers- intention to purchase and to improve firm performances to meet consumer needs.

Keywords: Recommendation sources, Online purchaseintentions, Gender differences, Perceived risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3021
4754 Meditation Based Brain Painting Promoting Foreign Language Memory through Establishing a Brain-Computer Interface

Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny

Abstract:

In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide insights into meditation, creative language education, brain-computer interface, and human-computer interactions.

Keywords: Brain-computer interface, creative thinking, meditation, mental health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
4753 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.

Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
4752 Evaluation of Low-Reducible Sinter in Blast Furnace Technology by Mathematical Model Developed at Centre ENET, VSB – Technical University of Ostrava

Authors: S. Jursová, P. Pustějovská, S. Brožová, J. Bilík

Abstract:

The paper deals with possibilities of interpretation of iron ore reducibility tests. It presents a mathematical model developed at Centre ENET, VŠB – Technical University of Ostrava, Czech Republic for an evaluation of metallurgical material of blast furnace feedstock such as iron ore, sinter or pellets. According to the data from the test, the model predicts its usage in blast furnace technology and its effects on production parameters of shaft aggregate. At the beginning, the paper sums up the general concept and experience in mathematical modelling of iron ore reduction. It presents basic equation for the calculation and the main parts of the developed model. In the experimental part, there is an example of usage of the mathematical model. The paper describes the usage of data for some predictive calculation. There are presented material, method of carried test of iron ore reducibility. Then there are graphically interpreted effects of used material on carbon consumption, rate of direct reduction and the whole reduction process.

Keywords: Blast furnace technology, iron ore reduction, mathematical model, prediction of iron ore reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
4751 Medical Image Registration by Minimizing Divergence Measure Based on Tsallis Entropy

Authors: Shaoyan Sun, Liwei Zhang, Chonghui Guo

Abstract:

As the use of registration packages spreads, the number of the aligned image pairs in image databases (either by manual or automatic methods) increases dramatically. These image pairs can serve as a set of training data. Correspondingly, the images that are to be registered serve as testing data. In this paper, a novel medical image registration method is proposed which is based on the a priori knowledge of the expected joint intensity distribution estimated from pre-aligned training images. The goal of the registration is to find the optimal transformation such that the distance between the observed joint intensity distribution obtained from the testing image pair and the expected joint intensity distribution obtained from the corresponding training image pair is minimized. The distance is measured using the divergence measure based on Tsallis entropy. Experimental results show that, compared with the widely-used Shannon mutual information as well as Tsallis mutual information, the proposed method is computationally more efficient without sacrificing registration accuracy.

Keywords: Multimodality images, image registration, Shannonentropy, Tsallis entropy, mutual information, Powell optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
4750 Scale Development for Measuring E-Service Quality in Banking

Authors: Vivek Agrawal, Vikas Tripathi, Nitin Seth

Abstract:

This study examines several critical dimensions of eservice quality overlooked in the existing literature and proposes a model and instrument framework for measuring customer perceived e-service quality in the banking sector. The initial design was derived from a pool of instrument dimensions and their items from the existing literature review by content analysis. Based on focused group discussion, nine dimensions were extracted. An exploratory factor analysis approach was applied to data from a survey of 323 respondents. The instrument has been designed specifically for the banking sector. Research data was collected from bank customers who use electronic banking in a developing economy. A nine-factor instrument has been proposed to measure the e-service quality. The instrument has been checked for reliability. The validity and sample place limited the applicability of the instrument across economies and service categories. Future research must be conducted to check the validity. This instrument can help bankers in developing economies like India to measure the e-service quality and make improvements. The present study offers a systematic procedure that provides insights on to the conceptual and empirical comprehension of customer perceived e-service quality and its constituents.

Keywords: Testing, instrument, e-service quality, factor analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3838
4749 Body Composition Analysis of University Students by Anthropometry and Bioelectrical Impedance Analysis

Authors: Vinti Davar

Abstract:

Background: Worldwide, at least 2.8 million people die each year as a result of being overweight or obese, and 35.8 million (2.3%) of global DALYs are caused by overweight or obesity. Obesity is acknowledged as one of the burning public health problems reducing life expectancy and quality of life. The body composition analysis of the university population is essential in assessing the nutritional status, as well as the risk of developing diseases associated with abnormal body fat content so as to make nutritional recommendations. Objectives: The main aim was to determine the prevalence of obesity and overweight in University students using Anthropometric analysis and BIA methods. Material and Methods: In this cross-sectional study, 283 university students participated. The body composition analysis was undertaken by using mainly: i) Anthropometric Measurement: Height, Weight, BMI, waist circumference, hip circumference and skin fold thickness, ii) Bio-electrical impedance was used for analysis of body fat mass, fat percent and visceral fat which was measured by Tanita SC-330P Professional Body Composition Analyzer. The data so collected were compiled in MS Excel and analyzed for males and females using SPSS 16. Results and Discussion: The mean age of the male (n= 153) studied subjects was 25.37 ±2.39 years and females (n=130) was 22.53 ±2.31. The data of BIA revealed very high mean fat per cent of the female subjects i.e. 30.3±6.5 per cent whereas mean fat per cent of the male subjects was 15.60±6.02 per cent indicating a normal body fat range. The findings showed high visceral fat of both males (12.92±3.02) and females (16.86±4.98). BMI, BF% and WHR were higher among females, and BMI was higher among males. The most evident correlation was verified between BF% and WHR for female students (r=0.902; p<0.001). The correlation of BFM and BF% with thickness of triceps, sub scapular and abdominal skin folds and BMI was significant (P<0.001). Conclusion: The studied data made it obvious that there is a need to initiate lifestyle changing strategies especially for adult females and encourage them to improve their dietary intake to prevent incidence of noncommunicable diseases due to obesity and high fat percentage.

Keywords: Anthropometry, bioelectrical impedance, body fat percentage, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834
4748 Knowledge Impact on Measurement: A Conceptual Metric for Evaluating Performance Improvement (PI) at the Kuwait Institute for Scientific Research (KISR)

Authors: AlMatrouk H. S., Juszczak M. D.

Abstract:

Research and development R&D work involves enormous amount of work that has to do with data measurement and collection. This process evolves as new information is fed, new technologies are utilized, and eventually new knowledge is created by the stakeholders i.e., researchers, clients, and end-users. When new knowledge is created, procedures of R&D work should evolve and produce better results within improved research skills and improved methods of data measurements and collection. This measurement improvement should then be benchmarked against a metric that should be developed at the organization. In this paper, we are suggesting a conceptual metric for R&D work performance improvement (PI) at the Kuwait Institute for Scientific Research (KISR). This PI is to be measured against a set of variables in the suggested metric, which are more closely correlated to organizational output, as opposed to organizational norms. The paper also mentions and discusses knowledge creation and management as an addedvalue to R&D work and measurement improvement. The research methodology followed in this work is qualitative in nature, based on a survey that was distributed to researchers and interviews held with senior researchers at KISR. Research and analyses in this paper also include looking at and analyzing KISR-s literature.

Keywords: Knowledge Creation, Performance Improvement (PI), Conceptual Metric, Knowledge Management (KM) addedvalue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
4747 A Review on Climate Change and Sustainable Agriculture in Southeast Nigeria

Authors: Jane O. Munonye

Abstract:

Climate change has both negative and positive effects in agricultural production. For agriculture to be sustainable in adverse climate change condition, some natural measures are needed. The issue is to produce more food with available natural resources and reduce the contribution of agriculture to climate change. The study reviewed climate change and sustainable agriculture in southeast Nigeria. Data from the study were from secondary sources. Ten scientific papers were consulted and data for the review were collected from three. The objectives of the paper were as follows: to review the effect of climate change on one major arable crop in southeast Nigeria (yam; Dioscorea rotundata); evident of climate change impact and methods for sustainable agricultural production in adverse weather condition. Some climatic parameter as sunshine, relative humidity and rainfall have negative relationship with yam production and significant at 10% probability. Crop production was predicted to decline by 25% per hectare by 2060 while livestock production has increased the incidence of diseases and pathogens as the major effect to agriculture. Methods for sustainable agriculture and damage of natural resources by climate change were highlighted. Agriculture needs to be transformed as climate changes to enable the sector to be sustainable. There should be a policy in place to facilitate the integration of sustainability in Nigeria agriculture.

Keywords: Agriculture, climate change, sustainability, yam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
4746 Comparison of ANFIS and ANN for Estimation of Biochemical Oxygen Demand Parameter in Surface Water

Authors: S. Areerachakul

Abstract:

Nowadays, several techniques such as; Fuzzy Inference System (FIS) and Neural Network (NN) are employed for developing of the predictive models to estimate parameters of water quality. The main objective of this study is to compare between the predictive ability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model and Artificial Neural Network (ANN) model to estimate the Biochemical Oxygen Demand (BOD) on data from 11 sampling sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2004-2011. The five parameters of water quality namely Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Ammonia Nitrogen (NH3N), Nitrate Nitrogen (NO3N), and Total Coliform bacteria (T-coliform) are used as the input of the models. These water quality indices affect the biochemical oxygen demand. The experimental results indicate that the ANN model provides a higher correlation coefficient (R=0.73) and a lower root mean square error (RMSE=4.53) than the corresponding ANFIS model.

Keywords: adaptive neuro-fuzzy inference system, artificial neural network, biochemical oxygen demand, surface water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527
4745 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: Kinemic gait data, Neural networks, Hip joint implant, Hip arthroplasty, Rehabilitation Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798