Search results for: Battery grading algorithm
578 Land Use Change Detection Using Remote Sensing and GIS
Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi
Abstract:
In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.
Keywords: HARAZ Basin, Change Detection, Land-use, Satellite Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326577 Optimal Choice and Location of Multi Type Facts Devices in Deregulated Electricity Market Using Evolutionary Programming Method
Authors: K. Balamurugan, R. Muralisachithanandam, V. Dharmalingam, R. Srikanth
Abstract:
This paper deals with the optimal choice and allocation of multi FACTS devices in Deregulated power system using Evolutionary Programming method. The objective is to achieve the power system economic generation allocation and dispatch in deregulated electricity market. Using the proposed method, the locations of the FACTS devices, their types and ratings are optimized simultaneously. Different kinds of FACTS devices are simulated in this study such as UPFC, TCSC, TCPST, and SVC. Simulation results validate the capability of this new approach in minimizing the overall system cost function, which includes the investment costs of the FACTS devices and the bid offers of the market participants. The proposed algorithm is an effective and practical method for the choice and allocation of FACTS devices in deregulated electricity market environment. The standard data of IEEE 14 Bus systems has been taken into account and simulated with aid of MAT-lab software and results were obtained.
Keywords: FACTS devices, Optimal allocation, Deregulated electricity market, Evolutionary programming, Mat Lab.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321576 A Robust Optimization Model for the Single-Depot Capacitated Location-Routing Problem
Authors: Abdolsalam Ghaderi
Abstract:
In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve the customers when the parameters may change under different circumstances. This problem has many applications, especially in the area of supply chain management and distribution systems. To get closer to real-world situations, travel time of vehicles, the fixed cost of vehicles usage and customers’ demand are considered as a source of uncertainty. A combined approach including robust optimization and stochastic programming was presented to deal with the uncertainty in the problem at hand. For this purpose, a mixed integer programming model is developed and a heuristic algorithm based on Variable Neighborhood Search(VNS) is presented to solve the model. Finally, the computational results are presented and future research directions are discussed.Keywords: Location-routing problem, robust optimization, Stochastic Programming, variable neighborhood search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759575 Prediction of Reusability of Object Oriented Software Systems using Clustering Approach
Authors: Anju Shri, Parvinder S. Sandhu, Vikas Gupta, Sanyam Anand
Abstract:
In literature, there are metrics for identifying the quality of reusable components but the framework that makes use of these metrics to precisely predict reusability of software components is still need to be worked out. These reusability metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the software component and hence improve the productivity due to probabilistic increase in the reuse level. As CK metric suit is most widely used metrics for extraction of structural features of an object oriented (OO) software; So, in this study, tuned CK metric suit i.e. WMC, DIT, NOC, CBO and LCOM, is used to obtain the structural analysis of OO-based software components. An algorithm has been proposed in which the inputs can be given to K-Means Clustering system in form of tuned values of the OO software component and decision tree is formed for the 10-fold cross validation of data to evaluate the in terms of linguistic reusability value of the component. The developed reusability model has produced high precision results as desired.Keywords: CK-Metric, Desicion Tree, Kmeans, Reusability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916574 Numerical Analysis on Triceratops Restraining System: Failure Conditions of Tethers
Authors: Srinivasan Chandrasekaran, Manda Hari Venkata Ramachandra Rao
Abstract:
Increase in the oil and gas exploration in ultra deep-water demands an adaptive structural form of the platform. Triceratops has superior motion characteristics compared to that of the Tension Leg Platform and Single Point Anchor Reservoir platforms, which is well established in the literature. Buoyant legs that support the deck are position-restrained to the sea bed using tethers with high axial pretension. Environmental forces that act on the platform induce dynamic tension variations in the tethers, causing the failure of tethers. The present study investigates the dynamic response behavior of the restraining system of the platform under the failure of a single tether of each buoyant leg in high sea states. Using the rain-flow counting algorithm and the Goodman diagram, fatigue damage caused to the tethers is estimated, and the fatigue life is predicted. Results shows that under failure conditions, the fatigue life of the remaining tethers is quite alarmingly low.
Keywords: Fatigue life, Failure analysis, PM spectrum, rain flow counting, triceratops.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751573 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks
Authors: C. N. Vanitha, M. Usha
Abstract:
In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.
Keywords: Neural networks, pattern learning, security, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306572 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor
Authors: Piyangkun Kukutapan, Siridech Boonsang
Abstract:
The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.
Keywords: Maximum power point tracking, multilayer perceptron neural network, optimal duty cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679571 Numerical Optimization of Pin-Fin Heat Sink with Forced Cooling
Authors: Y. T. Yang, H. S. Peng, H. T. Hsu
Abstract:
This study presents the numerical simulation of optimum pin-fin heat sink with air impinging cooling by using Taguchi method. 9 L ( 4 3 ) orthogonal array is selected as a plan for the four design-parameters with three levels. The governing equations are discretized by using the control-volume-based-finite-difference method with a power-law scheme on the non-uniform staggered grid. We solved the coupling of the velocity and the pressure terms of momentum equations using SIMPLEC algorithm. We employ the k −ε two-equations turbulence model to describe the turbulent behavior. The parameters studied include fin height H (35mm-45mm), inter-fin spacing a , b , and c (2 mm-6.4 mm), and Reynolds number ( Re = 10000- 25000). The objective of this study is to examine the effects of the fin spacings and fin height on the thermal resistance and to find the optimum group by using the Taguchi method. We found that the fin spacings from the center to the edge of the heat sink gradually extended, and the longer the fin’s height the better the results. The optimum group is 3 1 2 3 H a b c . In addition, the effects of parameters are ranked by importance as a , H , c , and b .
Keywords: Heat sink, Optimum, Electronics cooling, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3708570 NonStationary CMA for Decision Feedback Equalization of Markovian Time Varying Channels
Authors: S. Cherif, M. Turki-Hadj Alouane
Abstract:
In this paper, we propose a modified version of the Constant Modulus Algorithm (CMA) tailored for blind Decision Feedback Equalizer (DFE) of first order Markovian time varying channels. The proposed NonStationary CMA (NSCMA) is designed so that it explicitly takes into account the Markovian structure of the channel nonstationarity. Hence, unlike the classical CMA, the NSCMA is not blind with respect to the channel time variations. This greatly helps the equalizer in the case of realistic channels, and avoids frequent transmissions of training sequences. This paper develops a theoretical analysis of the steady state performance of the CMA and the NSCMA for DFEs within a time varying context. Therefore, approximate expressions of the mean square errors are derived. We prove that in the steady state, the NSCMA exhibits better performance than the classical CMA. These new results are confirmed by simulation. Through an experimental study, we demonstrate that the Bit Error Rate (BER) is reduced by the NSCMA-DFE, and the improvement of the BER achieved by the NSCMA-DFE is as significant as the channel time variations are severe.Keywords: Time varying channel, Markov model, Blind DFE, CMA, NSCMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300569 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, Dragoş Gavriluţ, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through (semi)-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: Detection Rate, False Positives, Perceptron, One Side Class, Ensembles, Decision Tree, Hybrid methods, Feature Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3282568 Performance Improvements of DSP Applications on a Generic Reconfigurable Platform
Authors: Michalis D. Galanis, Gregory Dimitroulakos, Costas E. Goutis
Abstract:
Speedups from mapping four real-life DSP applications on an embedded system-on-chip that couples coarsegrained reconfigurable logic with an instruction-set processor are presented. The reconfigurable logic is realized by a 2-Dimensional Array of Processing Elements. A design flow for improving application-s performance is proposed. Critical software parts, called kernels, are accelerated on the Coarse-Grained Reconfigurable Array. The kernels are detected by profiling the source code. For mapping the detected kernels on the reconfigurable logic a prioritybased mapping algorithm has been developed. Two 4x4 array architectures, which differ in their interconnection structure among the Processing Elements, are considered. The experiments for eight different instances of a generic system show that important overall application speedups have been reported for the four applications. The performance improvements range from 1.86 to 3.67, with an average value of 2.53, compared with an all-software execution. These speedups are quite close to the maximum theoretical speedups imposed by Amdahl-s law.Keywords: Reconfigurable computing, Coarse-grained reconfigurable array, Embedded systems, DSP, Performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492567 Using Radial Basis Function Neural Networks to Calibrate Water Quality Model
Authors: Lihui Ma, Kunlun Xin, Suiqing Liu
Abstract:
Modern managements of water distribution system (WDS) need water quality models that are able to accurately predict the dynamics of water quality variations within the distribution system environment. Before water quality models can be applied to solve system problems, they should be calibrated. Although former researchers use GA solver to calibrate relative parameters, it is difficult to apply on the large-scale or medium-scale real system for long computational time. In this paper a new method is designed which combines both macro and detailed model to optimize the water quality parameters. This new combinational algorithm uses radial basis function (RBF) metamodeling as a surrogate to be optimized for the purpose of decreasing the times of time-consuming water quality simulation and can realize rapidly the calibration of pipe wall reaction coefficients of chlorine model of large-scaled WDS. After two cases study this method is testified to be more efficient and promising, and deserve to generalize in the future.Keywords: Metamodeling, model calibration, radial basisfunction, water distribution system, water quality model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026566 An Approaching Index to Evaluate a forward Collision Probability
Authors: Yuan-Lin Chen
Abstract:
This paper presents an approaching forward collision probability index (AFCPI) for alerting and assisting driver in keeping safety distance to avoid the forward collision accident in highway driving. The time to collision (TTC) and time headway (TH) are used to evaluate the TTC forward collision probability index (TFCPI) and the TH forward collision probability index (HFCPI), respectively. The Mamdani fuzzy inference algorithm is presented combining TFCPI and HFCPI to calculate the approaching collision probability index of the vehicle. The AFCPI is easier to understand for the driver who did not even have any professional knowledge in vehicle professional field. At the same time, the driver’s behavior is taken into account for suiting each driver. For the approaching index, the value 0 is indicating the 0% probability of forward collision, and the values 0.5 and 1 are indicating the 50% and 100% probabilities of forward collision, respectively. The AFCPI is useful and easy-to-understand for alerting driver to avoid the forward collision accidents when driving in highway.
Keywords: Approaching index, forward collision probability, time to collision, time headway.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164565 Neural Network Based Icing Identification and Fault Tolerant Control of a 340 Aircraft
Authors: F. Caliskan
Abstract:
This paper presents a Neural Network (NN) identification of icing parameters in an A340 aircraft and a reconfiguration technique to keep the A/C performance close to the performance prior to icing. Five aircraft parameters are assumed to be considerably affected by icing. The off-line training for identifying the clear and iced dynamics is based on the Levenberg-Marquard Backpropagation algorithm. The icing parameters are located in the system matrix. The physical locations of the icing are assumed at the right and left wings. The reconfiguration is based on the technique known as the control mixer approach or pseudo inverse technique. This technique generates the new control input vector such that the A/C dynamics is not much affected by icing. In the simulations, the longitudinal and lateral dynamics of an Airbus A340 aircraft model are considered, and the stability derivatives affected by icing are identified. The simulation results show the successful NN identification of the icing parameters and the reconfigured flight dynamics having the similar performance before the icing. In other words, the destabilizing icing affect is compensated.Keywords: Aircraft Icing, Stability Derivatives, Neural NetworkIdentification, Reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702564 Use of Fuzzy Edge Image in Block Truncation Coding for Image Compression
Authors: Amarunnishad T.M., Govindan V.K., Abraham T. Mathew
Abstract:
An image compression method has been developed using fuzzy edge image utilizing the basic Block Truncation Coding (BTC) algorithm. The fuzzy edge image has been validated with classical edge detectors on the basis of the results of the well-known Canny edge detector prior to applying to the proposed method. The bit plane generated by the conventional BTC method is replaced with the fuzzy bit plane generated by the logical OR operation between the fuzzy edge image and the corresponding conventional BTC bit plane. The input image is encoded with the block mean and standard deviation and the fuzzy bit plane. The proposed method has been tested with test images of 8 bits/pixel and size 512×512 and found to be superior with better Peak Signal to Noise Ratio (PSNR) when compared to the conventional BTC, and adaptive bit plane selection BTC (ABTC) methods. The raggedness and jagged appearance, and the ringing artifacts at sharp edges are greatly reduced in reconstructed images by the proposed method with the fuzzy bit plane.Keywords: Image compression, Edge detection, Ground truth image, Peak signal to noise ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701563 Generalized Maximal Ratio Combining as a Supra-optimal Receiver Diversity Scheme
Authors: Jean-Pierre Dubois, Rania Minkara, Rafic Ayoubi
Abstract:
Maximal Ratio Combining (MRC) is considered the most complex combining technique as it requires channel coefficients estimation. It results in the lowest bit error rate (BER) compared to all other combining techniques. However the BER starts to deteriorate as errors are introduced in the channel coefficients estimation. A novel combining technique, termed Generalized Maximal Ratio Combining (GMRC) with a polynomial kernel, yields an identical BER as MRC with perfect channel estimation and a lower BER in the presence of channel estimation errors. We show that GMRC outperforms the optimal MRC scheme in general and we hereinafter introduce it to the scientific community as a new “supraoptimal" algorithm. Since diversity combining is especially effective in small femto- and pico-cells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to IP-based 4th generation networks.
Keywords: Bit error rate, femto-internet cells, generalized maximal ratio combining, signal-to-scattering noise ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153562 An Energy Efficient Cluster Formation Protocol with Low Latency In Wireless Sensor Networks
Authors: A. Allirani, M. Suganthi
Abstract:
Data gathering is an essential operation in wireless sensor network applications. So it requires energy efficiency techniques to increase the lifetime of the network. Similarly, clustering is also an effective technique to improve the energy efficiency and network lifetime of wireless sensor networks. In this paper, an energy efficient cluster formation protocol is proposed with the objective of achieving low energy dissipation and latency without sacrificing application specific quality. The objective is achieved by applying randomized, adaptive, self-configuring cluster formation and localized control for data transfers. It involves application - specific data processing, such as data aggregation or compression. The cluster formation algorithm allows each node to make independent decisions, so as to generate good clusters as the end. Simulation results show that the proposed protocol utilizes minimum energy and latency for cluster formation, there by reducing the overhead of the protocol.Keywords: Sensor networks, Low latency, Energy sorting protocol, data processing, Cluster formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2743561 Depth Controls of an Autonomous Underwater Vehicle by Neurocontrollers for Enhanced Situational Awareness
Authors: Igor Astrov, Andrus Pedai
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the neural control of autonomous constant depth flight of an autonomous underwater vehicle (AUV). Autonomous constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. The fundamental requirement for constant depth flight is the knowledge of the depth, and a properly designed controller to govern the process. The AUV, named VORAM, is used as a model for the verification of the proposed hybrid control algorithm. Three neural network controllers, named NARMA-L2 controllers, are designed for fast and stable diving maneuvers of chosen AUV model. This hybrid control strategy for chosen AUV model has been verified by simulation of diving maneuvers using software package Simulink and demonstrated good performance for fast SA in real-time searchand- rescue operations.
Keywords: Autonomous underwater vehicles, depth control, neurocontrollers, situational awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870560 An Improved Illumination Normalization based on Anisotropic Smoothing for Face Recognition
Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seongwon Cho
Abstract:
Robust face recognition under various illumination environments is very difficult and needs to be accomplished for successful commercialization. In this paper, we propose an improved illumination normalization method for face recognition. Illumination normalization algorithm based on anisotropic smoothing is well known to be effective among illumination normalization methods but deteriorates the intensity contrast of the original image, and incurs less sharp edges. The proposed method in this paper improves the previous anisotropic smoothing-based illumination normalization method so that it increases the intensity contrast and enhances the edges while diminishing the effect of illumination variations. Due to the result of these improvements, face images preprocessed by the proposed illumination normalization method becomes to have more distinctive feature vectors (Gabor feature vectors) for face recognition. Through experiments of face recognition based on Gabor feature vector similarity, the effectiveness of the proposed illumination normalization method is verified.Keywords: Illumination Normalization, Face Recognition, Anisotropic smoothing, Gabor feature vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553559 Modified Naïve Bayes Based Prediction Modeling for Crop Yield Prediction
Authors: Kefaya Qaddoum
Abstract:
Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to model a simple but often satisfactory supervised classification method. The original naive Bayes have a serious weakness, which is producing redundant predictors. In this paper, utilized regularization technique was used to obtain a computationally efficient classifier based on naive Bayes. The suggested construction, utilized L1-penalty, is capable of clearing redundant predictors, where a modification of the LARS algorithm is devised to solve this problem, making this method applicable to a wide range of data. In the experimental section, a study conducted to examine the effect of redundant and irrelevant predictors, and test the method on WSG data set for tomato yields, where there are many more predictors than data, and the urge need to predict weekly yield is the goal of this approach. Finally, the modified approach is compared with several naive Bayes variants and other classification algorithms (SVM and kNN), and is shown to be fairly good.
Keywords: Tomato yields prediction, naive Bayes, redundancy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5111558 Automatic Lip Contour Tracking and Visual Character Recognition for Computerized Lip Reading
Authors: Harshit Mehrotra, Gaurav Agrawal, M.C. Srivastava
Abstract:
Computerized lip reading has been one of the most actively researched areas of computer vision in recent past because of its crime fighting potential and invariance to acoustic environment. However, several factors like fast speech, bad pronunciation, poor illumination, movement of face, moustaches and beards make lip reading difficult. In present work, we propose a solution for automatic lip contour tracking and recognizing letters of English language spoken by speakers using the information available from lip movements. Level set method is used for tracking lip contour using a contour velocity model and a feature vector of lip movements is then obtained. Character recognition is performed using modified k nearest neighbor algorithm which assigns more weight to nearer neighbors. The proposed system has been found to have accuracy of 73.3% for character recognition with speaker lip movements as the only input and without using any speech recognition system in parallel. The approach used in this work is found to significantly solve the purpose of lip reading when size of database is small.Keywords: Contour Velocity Model, Lip Contour Tracking, LipReading, Visual Character Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403557 A New Hybrid RMN Image Segmentation Algorithm
Authors: Abdelouahab Moussaoui, Nabila Ferahta, Victor Chen
Abstract:
The development of aid's systems for the medical diagnosis is not easy thing because of presence of inhomogeneities in the MRI, the variability of the data from a sequence to the other as well as of other different source distortions that accentuate this difficulty. A new automatic, contextual, adaptive and robust segmentation procedure by MRI brain tissue classification is described in this article. A first phase consists in estimating the density of probability of the data by the Parzen-Rozenblatt method. The classification procedure is completely automatic and doesn't make any assumptions nor on the clusters number nor on the prototypes of these clusters since these last are detected in an automatic manner by an operator of mathematical morphology called skeleton by influence zones detection (SKIZ). The problem of initialization of the prototypes as well as their number is transformed in an optimization problem; in more the procedure is adaptive since it takes in consideration the contextual information presents in every voxel by an adaptive and robust non parametric model by the Markov fields (MF). The number of bad classifications is reduced by the use of the criteria of MPM minimization (Maximum Posterior Marginal).Keywords: Clustering, Automatic Classification, SKIZ, MarkovFields, Image segmentation, Maximum Posterior Marginal (MPM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414556 Effect of Non Uniformity Factors and Assignment Factors on Errors in Charge Simulation Method with Point Charge Model
Authors: Gururaj S Punekar, N K Kishore Senior, H S Y Shastry
Abstract:
Charge Simulation Method (CSM) is one of the very widely used numerical field computation technique in High Voltage (HV) engineering. The high voltage fields of varying non uniformities are encountered in practice. CSM programs being case specific, the simulation accuracies heavily depend on the user (programmers) experience. Here is an effort to understand CSM errors and evolve some guidelines to setup accurate CSM models, relating non uniformities with assignment factors. The results are for the six-point-charge model of sphere-plane gap geometry. Using genetic algorithm (GA) as tool, optimum assignment factors at different non uniformity factors for this model have been evaluated and analyzed. It is shown that the symmetrically placed six-point-charge models can be good enough to set up CSM programs with potential errors less than 0.1% when the field non uniformity factor is greater than 2.64 (field utilization factor less than 52.76%).
Keywords: Assignment factor, Charge Simulation Method, High Voltage, Numerical field computation, Non uniformity factor, Simulation errors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053555 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: Classification, classifier fusion, CNN, Deep Learning, prediction, SNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721554 OCR for Script Identification of Hindi (Devnagari) Numerals using Feature Sub Selection by Means of End-Point with Neuro-Memetic Model
Authors: Banashree N. P., R. Vasanta
Abstract:
Recognition of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], a character or symbol to be recognized can be machine printed or handwritten characters/numerals. There are several approaches that deal with problem of recognition of numerals/character depending on the type of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent. Our work focused on a technique in feature extraction i.e. global based approach using end-points information, which is extracted from images of isolated numerals. These feature vectors are fed to neuro-memetic model [18] that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. . In proposed scheme data sets are fed to neuro-memetic algorithm, which identifies the rule with highest fitness value of nearly 100 % & template associates with this rule is nothing but identified numerals. Experimentation result shows that recognition rate is 92-97 % compared to other models.Keywords: OCR, Global Feature, End-Points, Neuro-Memetic model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760553 Voice Disorders Identification Using Hybrid Approach: Wavelet Analysis and Multilayer Neural Networks
Authors: L. Salhi, M. Talbi, A. Cherif
Abstract:
This paper presents a new strategy of identification and classification of pathological voices using the hybrid method based on wavelet transform and neural networks. After speech acquisition from a patient, the speech signal is analysed in order to extract the acoustic parameters such as the pitch, the formants, Jitter, and shimmer. Obtained results will be compared to those normal and standard values thanks to a programmable database. Sounds are collected from normal people and patients, and then classified into two different categories. Speech data base is consists of several pathological and normal voices collected from the national hospital “Rabta-Tunis". Speech processing algorithm is conducted in a supervised mode for discrimination of normal and pathology voices and then for classification between neural and vocal pathologies (Parkinson, Alzheimer, laryngeal, dyslexia...). Several simulation results will be presented in function of the disease and will be compared with the clinical diagnosis in order to have an objective evaluation of the developed tool.Keywords: Formants, Neural Networks, Pathological Voices, Pitch, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842552 Complexity Analysis of Some Known Graph Coloring Instances
Authors: Jeffrey L. Duffany
Abstract:
Graph coloring is an important problem in computer science and many algorithms are known for obtaining reasonably good solutions in polynomial time. One method of comparing different algorithms is to test them on a set of standard graphs where the optimal solution is already known. This investigation analyzes a set of 50 well known graph coloring instances according to a set of complexity measures. These instances come from a variety of sources some representing actual applications of graph coloring (register allocation) and others (mycieleski and leighton graphs) that are theoretically designed to be difficult to solve. The size of the graphs ranged from ranged from a low of 11 variables to a high of 864 variables. The method used to solve the coloring problem was the square of the adjacency (i.e., correlation) matrix. The results show that the most difficult graphs to solve were the leighton and the queen graphs. Complexity measures such as density, mobility, deviation from uniform color class size and number of block diagonal zeros are calculated for each graph. The results showed that the most difficult problems have low mobility (in the range of .2-.5) and relatively little deviation from uniform color class size.Keywords: graph coloring, complexity, algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403551 Optimization of Machining Parametric Study on Electrical Discharge Machining
Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel
Abstract:
Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.
Keywords: Material removal rate, TWR, OC, DOE, ANOVA, MINITAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833550 Semi-automatic Construction of Ontology-based CBR System for Knowledge Integration
Authors: Junjie Gao, Guishi Deng
Abstract:
In order to integrate knowledge in heterogeneous case-based reasoning (CBR) systems, ontology-based CBR system has become a hot topic. To solve the facing problems of ontology-based CBR system, for example, its architecture is nonstandard, reusing knowledge in legacy CBR is deficient, ontology construction is difficult, etc, we propose a novel approach for semi-automatically construct ontology-based CBR system whose architecture is based on two-layer ontology. Domain knowledge implied in legacy case bases can be mapped from relational database schema and knowledge items to relevant OWL local ontology automatically by a mapping algorithm with low time-complexity. By concept clustering based on formal concept analysis, computing concept equation measure and concept inclusion measure, some suggestions about enriching or amending concept hierarchy of OWL local ontologies are made automatically that can aid designers to achieve semi-automatic construction of OWL domain ontology. Validation of the approach is done by an application example.Keywords: OWL ontology, Case-based Reasoning, FormalConcept Analysis, Knowledge Integration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013549 A New Reliability Based Channel Allocation Model in Mobile Networks
Authors: Anujendra, Parag Kumar Guha Thakurta
Abstract:
The data transmission between mobile hosts and base stations (BSs) in Mobile networks are often vulnerable to failure. So, efficient link connectivity, in terms of the services of both base stations and communication channels of the network, is required in wireless mobile networks to achieve highly reliable data transmission. In addition, it is observed that the number of blocked hosts is increased due to insufficient number of channels during heavy load in the network. Under such scenario, the channels are allocated accordingly to offer a reliable communication at any given time. Therefore, a reliability-based channel allocation model with acceptable system performance is proposed as a MOO problem in this paper. Two conflicting parameters known as Resource Reuse factor (RRF) and the number of blocked calls are optimized under reliability constraint in this problem. The solution to such MOO problem is obtained through NSGA-II (Non dominated Sorting Genetic Algorithm). The effectiveness of the proposed model in this work is shown with a set of experimental results.
Keywords: Base station, channel, GA, Pareto-optimal, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912