Search results for: physical layer simulation.
2502 Numerical Solution of Linear Ordinary Differential Equations in Quantum Chemistry by Clenshaw Method
Authors: M. Saravi, F. Ashrafi, S.R. Mirrajei
Abstract:
As we know, most differential equations concerning physical phenomenon could not be solved by analytical method. Even if we use Series Method, some times we need an appropriate change of variable, and even when we can, their closed form solution may be so complicated that using it to obtain an image or to examine the structure of the system is impossible. For example, if we consider Schrodinger equation, i.e., We come to a three-term recursion relations, which work with it takes, at least, a little bit time to get a series solution[6]. For this reason we use a change of variable such as or when we consider the orbital angular momentum[1], it will be necessary to solve. As we can observe, working with this equation is tedious. In this paper, after introducing Clenshaw method, which is a kind of Spectral method, we try to solve some of such equations.Keywords: Chebyshev polynomials, Clenshaw method, ODEs, Spectral methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14212501 Extending the Quantum Entropy to Multidimensional Signal Processing
Authors: Youssef Khmou, Said Safi, Miloud Frikel
Abstract:
This paper treats different aspects of entropy measure in classical information theory and statistical quantum mechanics, it presents the possibility of extending the definition of Von Neumann entropy to image and array processing. In the first part, we generalize the quantum entropy using singular values of arbitrary rectangular matrices to measure the randomness and the quality of denoising operation, this new definition of entropy can be implemented to compare the performance analysis of filtering methods. In the second part, we apply the concept of pure state in quantum formalism to generalize the maximum entropy method for narrowband and farfield source localization problem. Several computer simulation results are illustrated to demonstrate the effectiveness of the proposed techniques.Keywords: Von Neumann entropy, Filtering, array, DoA, Maximum Entropy Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25062500 Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids
Authors: N. Targui, H. Kahalerras
Abstract:
The present work is a numerical simulation of nanofluids flow in a double pipe heat exchanger provided with porous baffles. The hot nanofluid flows in the inner cylinder, whereas the cold nanofluid circulates in the annular gap. The Darcy- Brinkman-Forchheimer model is adopted to describe the flow in the porous regions, and the governing equations with the appropriate boundary conditions are solved by the finite volume method. The results reveal that the addition of metallic nanoparticles enhances the rate of heat transfer in comparison to conventional fluids but this augmentation is accompanied by an increase in pressure drop. The highest heat exchanger performances are obtained when nanoparticles are added only to the cold fluid.
Keywords: Double pipe heat exchanger, Nanofluids, Nanoparticles, Porous baffles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35182499 An Approach to Solving a Permutation Problem of Frequency Domain Independent Component Analysis for Blind Source Separation of Speech Signals
Authors: Masaru Fujieda, Takahiro Murakami, Yoshihisa Ishida
Abstract:
Independent component analysis (ICA) in the frequency domain is used for solving the problem of blind source separation (BSS). However, this method has some problems. For example, a general ICA algorithm cannot determine the permutation of signals which is important in the frequency domain ICA. In this paper, we propose an approach to the solution for a permutation problem. The idea is to effectively combine two conventional approaches. This approach improves the signal separation performance by exploiting features of the conventional approaches. We show the simulation results using artificial data.Keywords: Blind source separation, Independent componentanalysis, Frequency domain, Permutation ambiguity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17862498 Developing a Simple and an Accurate Formula for the Conduction Angle of a Single Phase Rectifier with RL Load
Authors: S. Ali Al-Mawsawi, Fadhel A. Albasri
Abstract:
The paper presents a simple and an accurate formula that has been developed for the conduction angle (δ) of a single phase half-wave or full-wave controlled rectifier with RL load. This formula can be also used for calculating the conduction angle (δ) in case of A.C. voltage regulator with inductive load under discontinuous current mode. The simulation results shows that the conduction angle calculated from the developed formula agree very well with that obtained from the exact solution arrived from the iterative method. Applying the developed formula can reduce the computational time and reduce the time for manual classroom calculation. In addition, the proposed formula is attractive for real time implementations.Keywords: Conduction Angle, Firing Angle, Excitation Angle, Load Angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51322497 Orthogonal Regression for Nonparametric Estimation of Errors-in-Variables Models
Authors: Anastasiia Yu. Timofeeva
Abstract:
Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.
Keywords: Grade point average, orthogonal regression, penalized regression spline, locally weighted regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21342496 Designs of Temperature Measuring Device for a Re-Configured Milling Machine
Authors: Esther T. Akinlabi, Stephen A. Akinlabi
Abstract:
The design of temperature measuring approach for a re-configured milling machine to produce friction stir welds is reported in this paper. The product design specifications for the redesigning of a milling machine were first outlined and the ranking criteria were determined. Three different concepts were generated for the temperature measurement on the reconfigured system and the preferred or the best concept was selected based on the set design ranking criteria. Further simulation and performance analysis was then conducted on the concept. The Infrared Thermography (IRT) concept was selected for the temperature measurement among other concepts generated because it is an ideal and most effective system of measurement in this regard.
Keywords: Clamping system, Friction Stir Welding, Reconfiguration, Support systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25742495 Study of Currents and Temperature of Induced Spur Gear using 2d Simulation
Authors: N. Barka, P. Bocher, A. Chebak, J. Brousseau, D. S. Ramdenee
Abstract:
This paper presents the study of induced currents and temperature distribution in gear heated by induction process using 2D finite element (FE) model. The model is developed by coupling Maxwell and heat transfer equations into a multi-physics model. The obtained results allow comparing the medium frequency (MF) and high frequency (HF) cases and the effect of machine parameters on the evolution of induced currents and temperature during heating. The sensitivity study of the temperature profile is conducted and the case hardness is predicted using the final temperature profile. These results are validated using tests and give a good understanding of phenomena during heating process.Keywords: 2D model, induction heating, spur gear, induced currents, experimental validation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16132494 Hydrogen Generation by Accelerating Aluminum Corrosion in Water with Alumina
Authors: J. Skrovan, A. Alfantazi, T. Troczynski
Abstract:
For relatively small particles of aluminum (<60 μm), a measurable percentage of the aluminum (>5%) is observed to corrode before passivation occurs at moderate temperatures (>50oC) in de-ionized water within one hour. Physical contact with alumina powder results in a significant increase in both the rate of corrosion and the extent of corrosion before passivation. Whereas the resulting release of hydrogen gas could be of commercial interest for portable hydrogen supply systems, the fundamental aspects of Al corrosion acceleration in presence of dispersed alumina particles are equally important. This paper investigates the effects of various amounts of alumina on the corrosion rate of aluminum powders in water and the effect of multiple additions of aluminum into a single reactor.Keywords: Alumina, Aluminum, Corrosion, Hydrogen
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29882493 Phase Noise Impact on BER in Space Communication
Authors: Ondrej Baran, Miroslav Kasal, Petr Vagner, Tomas Urbanec
Abstract:
This paper deals with the modeling and the evaluation of a multiplicative phase noise influence on the bit error ratio in a general space communication system. Our research is focused on systems with multi-state phase shift keying modulation techniques and it turns out, that the phase noise significantly affects the bit error rate, especially for higher signal to noise ratios. These results come from a system model created in Matlab environment and are shown in a form of constellation diagrams and bit error rate dependencies. The change of a user data bit rate is also considered and included into simulation results. Obtained outcomes confirm theoretical presumptions.
Keywords: Additive thermal noise, AWGN, BER, bit error rate, multiplicative phase noise, phase shift keying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46142492 FPGA Implementation of the “PYRAMIDS“ Block Cipher
Authors: A. AlKalbany, H. Al hassan, M. Saeb
Abstract:
The “PYRAMIDS" Block Cipher is a symmetric encryption algorithm of a 64, 128, 256-bit length, that accepts a variable key length of 128, 192, 256 bits. The algorithm is an iterated cipher consisting of repeated applications of a simple round transformation with different operations and different sequence in each round. The algorithm was previously software implemented in Cµ code. In this paper, a hardware implementation of the algorithm, using Field Programmable Gate Arrays (FPGA), is presented. In this work, we discuss the algorithm, the implemented micro-architecture, and the simulation and implementation results. Moreover, we present a detailed comparison with other implemented standard algorithms. In addition, we include the floor plan as well as the circuit diagrams of the various micro-architecture modules.
Keywords: FPGA, VHDL, micro-architecture, encryption, cryptography, algorithm, data communication security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17042491 A Novel Zero Voltage Transition Synchronous Buck Converter for Portable Application
Authors: S. Pattnaik, A. K. Panda, Aroul K., K. K. Mahapatra
Abstract:
This paper proposes a zero-voltage transition (ZVT) PWM synchronous buck converter, which is designed to operate at low output voltage and high efficiency typically required for portable systems. To make the DC-DC converter efficient at lower voltage, synchronous converter is an obvious choice because of lower conduction loss in the diode. The high-side MOSFET is dominated by the switching losses and it is eliminated by the soft switching technique. Additionally, the resonant auxiliary circuit designed is also devoid of the switching losses. The suggested procedure ensures an efficient converter. Theoretical analysis, computer simulation, and experimental results are presented to explain the proposed schemes.
Keywords: DC-DC Converter, Switching loss, Synchronous Buck, Soft switching, ZVT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31512490 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method
Authors: Said Laachir, Aziz Laaribi
Abstract:
The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.
Keywords: Helmholtz equation, Nikiforov-Uvarov method, exact solutions, eigenfunctions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30042489 Individual Actuators of a Car-Like Robot with Back Trailer
Authors: Tarek M. Nazih El-Derini, Ahmed K. El-Shenawy
Abstract:
This paper presents the hardware implemented and validation for a special system to assist the unprofessional users of car with back trailers. The system consists of two platforms; the front car platform (C) and the trailer platform (T). The main objective is to control the Trailer platform using the actuators found in the front platform (c). The mobility of the platform (C) is investigated and inverse and forward kinematics model is obtained for both platforms (C) and (T).The system is simulated using Matlab M-file and the simulation examples results illustrated the system performance. The system is constructed with a hardware setup for the front and trailer platform. The hardware experimental results and the simulated examples outputs showed the validation of the hardware setup.
Keywords: Kinematics, Modeling, Wheeled Mobile Robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23092488 Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation
Authors: A. Keshavarz, Z. Roosta
Abstract:
In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media.
Keywords: Paraxial group transformation, nonlocal nonlinear media, Cos-Gaussian beam, ABCD law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8642487 Dissimilar Materials Joint and Effect of Angle Junction on Stress Distribution at Interface
Authors: Ali Baladi, Alireza Fallahi Arezoodar
Abstract:
in dissimilar material joints, failure often occurs along the interface between two materials due to stress singularity. Stress distribution and its concentration depend on materials and geometry of the junction. Inhomogenity of stress distribution at the interface of junction of two materials with different elastic modules and stress concentration in this zone are the main factors resulting in rupture of the junction. Effect of joining angle in the interface of aluminum-polycarbonate will be discussed in this paper. Computer simulation and finite element analysis by ABAQUS showed that convex interfacial joint leads to stress reduction at junction corners in compare with straight joint. This finding is confirmed by photoelastic experimental results.Keywords: Elastic Modules, Stress Concentration, JoiningAngle, Photoelastic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21922486 CFD Simulations of a Co-current Spray Dryer
Authors: Saad Nahi Saleh
Abstract:
This paper presents the prediction of air flow, humidity and temperature patterns in a co-current pilot plant spray dryer fitted with a pressure nozzle using a three dimensional model. The modelling was done with a Computational Fluid Dynamic package (Fluent 6.3), in which the gas phase is modelled as continuum using the Euler approach and the droplet/ particle phase is modelled by the Discrete Phase model (Lagrange approach).Good agreement was obtained with published experimental data where the CFD simulation correctly predicts a fast downward central flowing core and slow recirculation zones near the walls. In this work, the effects of the air flow pattern on droplets trajectories, residence time distribution of droplets and deposition of the droplets on the wall also were investigated where atomizing of maltodextrin solution was used.Keywords: Spray, CFD, multiphase, drying, droplet, particle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40132485 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments
Authors: A. Kampker, K. Kreisköther, C. Reinders
Abstract:
Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.
Keywords: Additive manufacturing, design of experiments, mold making, PolyJet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17302484 Design and Trajectory Planning of Bipedal Walking Robot with Minimum Sufficient Actuation System
Authors: H. Siswoyo Jo, N. Mir-Nasiri, E. Jayamani
Abstract:
This paper presents a new type of mechanism and trajectory planning strategy for bipedal walking robot. The newly designed mechanism is able to improve the performance of bipedal walking robot in terms of energy efficiency and weight reduction by utilizing minimum number of actuators. The usage of parallelogram mechanism eliminates the needs of having an extra actuator at the knee joint. This mechanism works together with the joint space trajectory planning in order to realize straight legged walking which cannot be achieved by conventional inverse kinematics trajectory planning due to the singularity. The effectiveness of the proposed strategy is confirmed by computer simulation results.
Keywords: Bipedal robot, Energy efficiency, Straight legged walking, Trajectory planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18562483 Basic Research for Electroretinogram Moving the Center of the Multifocal Hexagonal Stimulus Array
Authors: Naoto Suzuki
Abstract:
Many ophthalmologists can examine declines in visual sensitivity at arbitrary points on the retina using a precise perimetry device with a fundus camera function. However, the retinal layer causing the decline in visual sensitivity cannot be identified by this method. We studied an electroretinogram (ERG) function that can move the center of the multifocal hexagonal stimulus array in order to investigate cryptogenic diseases, such as macular dystrophy, acute zonal occult outer retinopathy, and multiple evanescent white dot syndrome. An electroretinographic optical system, specifically a perimetric optical system, was added to an experimental device carrying the same optical system as a fundus camera. We also added an infrared camera, a cold mirror, a halogen lamp, and a monitor. The software was generated to show the multifocal hexagonal stimulus array on the monitor using C++Builder XE8 and to move the center of the array up and down as well as back and forth. We used a multifunction I/O device and its design platform LabVIEW for data retrieval. The plate electrodes were used to measure electrodermal activities around the eyes. We used a multifocal hexagonal stimulus array with 37 elements in the software. The center of the multifocal hexagonal stimulus array could be adjusted to the same position as the examination target of the precise perimetry. We successfully added the moving ERG function to the experimental ophthalmologic device.
Keywords: Moving ERG, precise perimetry, retinal layers, visual sensitivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7832482 Molecular Dynamics Analysis onI mpact Behaviour of Carbon Nanotubes and Graphene Sheets
Authors: Sajjad Seifoori
Abstract:
Impact behavior of striker on graphene sheet and carbon nanotube is investigated based on molecular dynamics (MD) simulations. A MD simulation is conducted to obtain the maximum dynamic deflections of a square and rectangular single-layered graphene sheets (SLGSs) with various values of side-length and striker parameter. Effect of (i) chirality, (ii) graphene side-length and nanotube length, (iii) striker mass on the maximum dynamic deflections of graphene and nanotube are investigated. The effect of different types of boundary condition on the maximum dynamic deflections is studied for zigzag and armchair SWCNTs with various aspect ratios (Length/Diameter).Keywords: Impact, molecular dynamic, graphene, nanotube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10802481 An Improved Cooperative Communication Scheme for IoT System
Authors: Eui-Hak Lee, Jae-Hyun Ro, Hyoung-Kyu Song
Abstract:
In internet of things (IoT) system, the communication scheme with reliability and low power is required to connect a terminal. Cooperative communication can achieve reliability and lower power than multiple-input multiple-output (MIMO) system. Cooperative communication increases the reliability with low power, but decreases a throughput. It has a weak point that the communication throughput is decreased. In this paper, a novel scheme is proposed to increase the communication throughput. The novel scheme is a transmission structure that increases transmission rate. A decoding scheme according to the novel transmission structure is proposed. Simulation results show that the proposed scheme increases the throughput without bit error rate (BER) performance degradation.Keywords: Cooperative communication, IoT, STBC, Transmission rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22552480 ZVZCT PWM Boost DC-DC Converter
Authors: İsmail Aksoy, Hacı Bodur, Nihan Altıntas
Abstract:
This paper introduces a boost converter with a new active snubber cell. In this circuit, all of the semiconductor components in the converter softly turns on and turns off with the help of the active snubber cell. Compared to the other converters, the proposed converter has advantages of size, number of components and cost. The main feature of proposed converter is that the extra voltage stresses do not occur on the main switches and main diodes. Also, the current stress on the main switch is acceptable level. Moreover, the proposed converter can operates under light load conditions and wide input line voltage. In this study, the operating principle of the proposed converter is presented and its operation is verified with the Proteus simulation software for a 1 kW and 100 kHz model.Keywords: Active snubber cell, boost converter, zero current switching, zero voltage switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24982479 A Multi-Objective Model for Supply Chain Network Design under Stochastic Demand
Authors: F. Alborzi, H. Vafaei, M.H. Gholami, M.M. S. Esfahani
Abstract:
In this article, the design of a Supply Chain Network (SCN) consisting of several suppliers, production plants, distribution centers and retailers, is considered. Demands of retailers are considered stochastic parameters, so we generate amounts of data via simulation to extract a few demand scenarios. Then a mixed integer two-stage programming model is developed to optimize simultaneously two objectives: (1) minimization the fixed and variable cost, (2) maximization the service level. A weighting method is utilized to solve this two objective problem and a numerical example is made to show the performance of the model.Keywords: Mixed Integer Programming, Multi-objective Optimization, Stochastic Demand, Supply Chain Design, Two Stage Programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23222478 Implementation and Simulation of Half-Bridge Series Resonant Inverter in Zero Voltage Switching
Authors: Buket Turan Azizoğlu
Abstract:
In switch mode power inverters, small sized inverters can be obtained by increasing the switching frequency. Switching frequency increment causes high driver losses. Also, high dt di and dt dv produced by the switching action creates high Electromagnetic Interference (EMI) and Radio Frequency Interference (RFI). In this paper, a series half bridge series resonant inverter circuit is simulated and evaluated practically to demonstrate the turn-on and turn-off conditions during zero or close to zero voltage switching. Also, the reverse recovery current effects of the body diode of the MOSFETs were investigated by operating above and below resonant frequency.Keywords: Driver losses, Half Bridge series resonant inverter, Zero Voltage Switching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37702477 Exploring More Productive Ways of Working
Authors: Jenna Ruostela, Antti Lönnqvist
Abstract:
New ways of working- refers to non-traditional work practices, settings and locations with information and communication technologies (ICT) to supplement or replace traditional ways of working. It questions the contemporary work practices and settings still very much used in knowledge-intensive organizations today. In this study new ways of working is seen to consist of two elements: work environment (incl. physical, virtual and social) and work practices. This study aims to gather the scattered information together and deepen the understanding on new ways of working. Moreover, the objective is to provide some evidence of the unclear productivity impacts of new ways of working using case study approach.
Keywords: Knowledge work, new ways of working, productivity, work environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21842476 Takagi-Sugeno Fuzzy Control of Induction Motor
Authors: Allouche Moez, Souissi Mansour, Chaabane Mohamed, Mehdi Driss
Abstract:
This paper deals with the synthesis of fuzzy state feedback controller of induction motor with optimal performance. First, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate a non linear system in the synchronous d-q frame rotating with electromagnetic field-oriented. Next, a fuzzy controller is designed to stabilise the induction motor and guaranteed a minimum disturbance attenuation level for the closed-loop system. The gains of fuzzy control are obtained by solving a set of Linear Matrix Inequality (LMI). Finally, simulation results are given to demonstrate the controller-s effectiveness.
Keywords: Rejection disturbance, fuzzy modelling, open-loop control, Fuzzy feedback controller, fuzzy observer, Linear Matrix Inequality (LMI)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19072475 Adaptive Extended Kalman Filter for Ballistic Missile Tracking
Authors: Gaurav Kumar, Dharmbir Prasad, Rudra Pratap Singh
Abstract:
In the current work, adaptive extended Kalman filter (AEKF) is presented for solution of ground radar based ballistic missile (BM) tracking problem in re-entry phase with unknown ballistic coefficient. The estimation of trajectory of any BM in re-entry phase is extremely difficult, because of highly non-linear motion of BM. The estimation accuracy of AEKF has been tested for a typical test target tracking problem adopted from literature. Further, the approach of AEKF is compared with extended Kalman filter (EKF). The simulation result indicates the superiority of the AEKF in solving joint parameter and state estimation problems.Keywords: Adaptive, AEKF, ballistic missile, EKF, re-entry phase, target tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16662474 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.
Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3212473 Investigation of Behavior on the Contact Surface of the Tire and Ground by CFD Simulation
Authors: M. F. Sung, Y.D. Kuan, R.J. Shyu, S.M. Lee
Abstract:
Tread design has evolved over the years to achieve the common tread pattern used in current vehicles. However, to meet safety and comfort requirements, tread design considers more than one design factor. Tread design must consider the grip and drainage, and the manner in which to reduce rolling noise, which is one of the main factors considered by manufacturers. The main objective of this study was the application the computational fluid dynamics (CFD) technique to simulate the contact surface of the tire and ground. The results demonstrated an air-Pumping and large pressure drop effect in the process of contact surface. The results also revealed that the pressure can be used to analyze sound pressure level (SPL).
Keywords: Air-pumping, computational fluid dynamics, sound pressure level, tire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377