Search results for: representative volume element
2620 A Morphological Examination of Urban Renewal Processes: The Sample of Konya City
Authors: Muzaffer Ali Yaygın, Mehmet Topçu
Abstract:
This research aims to investigate morphological changes in urban patterns in urban renewal areas by using geographic information systems and to reveal pattern differences that occur before and after urban renewal processes by applying a morphological analysis. The concept of urban morphology is not involved in urban renewal and urban planning practices in Turkey. This situation destroys the structural characteristic of urban space which appears as a consequence of changes at city, street or plot level. Different approaches and renewal interventions to urban settlements, which are formed as a reflection of cultural issues, may have positive and negative results. A morphological analysis has been applied to an urban renewal area that covers 325 ha. in Konya, in which city urban renewal projects have gained speed with the increasing of economic investments in this study. The study mentions urban renewal and urban morphology relationship, varied academic approach on the urban morphology issue, urban morphology components, changes in lots pattern and numerical differences that occur on road, construction and green space ratios that are before and after the renewal project, and the results of the morphological analysis. It is seen that the built-up area has significant differences when compared to the previous situation. The amount of green areas decreased significantly in quantitative terms; the transportation systems has been changed completely; and the property ownership has been reconstructed without taking the previous situation into account. Findings show that urban renewal projects in Turkey are put into practice with a rent-oriented approach without making an in-depth analysis. The paper discusses the morphological dimension of urban renewal projects in Turkey through a case study from Konya city.Keywords: Konya, pattern, urban morphology, urban renewal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12022619 Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance
Authors: Akan C. Offong, E. J. Anthony, Vasilije Manovic
Abstract:
A modified steady-state numerical model is developed for the electrochemical reduction of CO2 to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm2), FE-faradaic efficiency (~98%) and conversion (~80%) for CO2 electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF4]) electrolyte, on CD, FE and CO2 conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF4]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO2 mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO2 conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H2 formations. However, H2 formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO2 flow rate increases, CD, FE and CO2 conversion increases.
Keywords: Carbon dioxide, electro-chemical reduction, microfluidics, ionic liquids, modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10982618 Groundwater Potential Zone Identification in Unconsolidated Aquifer Using Geophysical Techniques around Tarbela Ghazi, District Haripur, Pakistan
Authors: Syed Muzyan Shahzad, Liu Jianxin, Asim Shahzad, Muhammad Sharjeel Raza, Sun Ya, Fanidi Meryem
Abstract:
Electrical resistivity investigation was conducted in vicinity of Tarbela Ghazi, in order to study the subsurface layer with a view of determining the depth to the aquifer and thickness of groundwater potential zones. Vertical Electrical Sounding (VES) using Schlumberger array was carried out at 16 VES stations. Well logging data at four tube wells have been used to mark the super saturated zones with great discharge rate. The present paper shows a geoelectrical identification of the lithology and an estimate of the relationship between the resistivity and Dar Zarrouk parameters (transverse unit resistance and longitudinal unit conductance). The VES results revealed both homogeneous and heterogeneous nature of the subsurface strata. Aquifer is unconfined to confine in nature, and at few locations though perched aquifer has been identified, groundwater potential zones are developed in unconsolidated deposits layers and more than seven geo-electric layers are observed at some VES locations. Saturated zones thickness ranges from 5 m to 150 m, whereas at few area aquifer is beyond 150 m thick. The average anisotropy, transvers resistance and longitudinal conductance values are 0.86 %, 35750.9821 Ω.m2, 0.729 Siemens, respectively. The transverse unit resistance values fluctuate all over the aquifer system, whereas below at particular depth high values are observed, that significantly associated with the high transmissivity zones. The groundwater quality in all analyzed samples is below permissible limit according to World Health Standard (WHO).
Keywords: Geoelectric layers, Dar Zarrouk parameters, Aquifer, Electro-stratigraphic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8172617 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System
Authors: A. Rong, P. B. Luh, R. Lahdelma
Abstract:
High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).Keywords: Dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16852616 SMaTTS: Standard Malay Text to Speech System
Authors: Othman O. Khalifa, Zakiah Hanim Ahmad, Teddy Surya Gunawan
Abstract:
This paper presents a rule-based text- to- speech (TTS) Synthesis System for Standard Malay, namely SMaTTS. The proposed system using sinusoidal method and some pre- recorded wave files in generating speech for the system. The use of phone database significantly decreases the amount of computer memory space used, thus making the system very light and embeddable. The overall system was comprised of two phases the Natural Language Processing (NLP) that consisted of the high-level processing of text analysis, phonetic analysis, text normalization and morphophonemic module. The module was designed specially for SM to overcome few problems in defining the rules for SM orthography system before it can be passed to the DSP module. The second phase is the Digital Signal Processing (DSP) which operated on the low-level process of the speech waveform generation. A developed an intelligible and adequately natural sounding formant-based speech synthesis system with a light and user-friendly Graphical User Interface (GUI) is introduced. A Standard Malay Language (SM) phoneme set and an inclusive set of phone database have been constructed carefully for this phone-based speech synthesizer. By applying the generative phonology, a comprehensive letter-to-sound (LTS) rules and a pronunciation lexicon have been invented for SMaTTS. As for the evaluation tests, a set of Diagnostic Rhyme Test (DRT) word list was compiled and several experiments have been performed to evaluate the quality of the synthesized speech by analyzing the Mean Opinion Score (MOS) obtained. The overall performance of the system as well as the room for improvements was thoroughly discussed.Keywords: Natural Language Processing, Text-To-Speech (TTS), Diphone, source filter, low-/ high- level synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19732615 Effect of Segregation on the Reaction Rate of Sewage Sludge Pyrolysis in a Bubbling Fluidized Bed
Authors: A. Soria-Verdugo, A. Morato-Godino, L. M. García-Gutiérrez, N. García-Hernando
Abstract:
The evolution of the pyrolysis of sewage sludge in a fixed and a fluidized bed was analyzed using a novel measuring technique. This original measuring technique consists of installing the whole reactor over a precision scale, capable of measuring the mass of the complete reactor with enough precision to detect the mass released by the sewage sludge sample during its pyrolysis. The inert conditions required for the pyrolysis process were obtained supplying the bed with a nitrogen flowrate, and the bed temperature was adjusted to either 500 ºC or 600 ºC using a group of three electric resistors. The sewage sludge sample was supplied through the top of the bed in a batch of 10 g. The measurement of the mass released by the sewage sludge sample was employed to determine the evolution of the reaction rate during the pyrolysis, the total amount of volatile matter released, and the pyrolysis time. The pyrolysis tests of sewage sludge in the fluidized bed were conducted using two different bed materials of the same size but different densities: silica sand and sepiolite particles. The higher density of silica sand particles induces a flotsam behavior for the sewage sludge particles which move close to the bed surface. In contrast, the lower density of sepiolite produces a neutrally-buoyant behavior for the sewage sludge particles, which shows a proper circulation throughout the whole bed in this case. The analysis of the evolution of the pyrolysis process in both fluidized beds show that the pyrolysis is faster when buoyancy effects are negligible, i.e. in the bed conformed by sepiolite particles. Moreover, sepiolite was found to show an absorbent capability for the volatile matter released during the pyrolysis of sewage sludge.
Keywords: Bubbling fluidized bed, pyrolysis time, segregation effects, sewage sludge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11282614 “Protection” or “Destruction”: Taking the Cultural Heritage Protection of the Grand Canal in Huaxian and Xunxian Sections of Henan Province as Example
Abstract:
The Grand Canal of China has been in use for more than two thousand years. It runs through the central and eastern regions of China and communicates with the five major river systems of Haihe River, Yellow River, Huaihe River, Yangtze River and Qiantang River from north to south. It is a complex, systematic and comprehensive water conservancy project in the period of agricultural civilization and includes the three parts of the Beijing-Hangzhou Canal, the Sui and Tang Dynasties Canal and the Eastern Zhejiang Canal. It covers eight provinces and cities including Beijing, Tianjin, Hebei, Shandong, Jiangsu, Zhejiang, Henan and Anhui. The Grand Canal is an important channel connecting the Central Plains and the Beijing-Hangzhou Canal, and it is also an important waterway trade channel. Nowadays, although the Grand Canal no longer bears the burden of communicating water transportation between the north and the south, the site of the Grand Canal is still a “historical museum” of the lifestyle of people who lived on the canal from the Ming and Qing Dynasties to the Republic of China. By means of literature reading and field investigation, this paper compares the different protection strategies of the Grand Canal in the region between the ancient villages of Huaxian and Xunxian, which witness the vicissitudes of canal water transport, to explore whether the protective renovation of historical and cultural routes is “protection” or “destruction”, and puts forward some protection suggestions.
Keywords: The Grand Canal, heritage conservation, cultural route, ancient villages, strategies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7252613 Quality of Groundwater in the Shallow Aquifers of a Paddy Dominated Agricultural River Basin, Kerala, India
Authors: N. Kannan, Sabu Joseph
Abstract:
Groundwater is an essential and vital component of our life support system. The groundwater resources are being utilized for drinking, irrigation and industrial purposes. There is growing concern on deterioration of groundwater quality due to geogenic and anthropogenic activities. Groundwater, being a fragile must be carefully managed to maintain its purity within standard limits. So, quality assessment and management are to be carried out hand-in-hand to have a pollution free environment and for a sustainable use. In order to assess the quality for consumption by human beings and for use in agriculture, the groundwater from the shallow aquifers (dug well) in the Palakkad and Chittur taluks of Bharathapuzha river basin - a paddy dominated agricultural basin (order=8th; L= 209 Km; Area = 6186 Km2), Kerala, India, has been selected. The water samples (n= 120) collected for various seasons, viz., monsoon-MON (August, 2005), postmonsoon-POM (December, 2005) and premonsoon-PRM (April, 2006), were analyzed for important physico-chemical attributes. Spatial and temporal variation of attributes do exist in the study area, and based on major cations and anions, different hydrochemical facies have been identified. Using Gibbs'diagram, rock dominance has been identified as the mechanism controlling groundwater chemistry. Further, the suitability of water for irrigation was determined by analyzing salinity hazard indicated by sodium adsorption ratio (SAR), residual sodium carbonate (RSC) and sodium percent (%Na). Finally, stress zones in the study area were delineated using Arc GIS spatial analysis and various management options were recommended to restore the ecosystem.
Keywords: Groundwater quality, agricultural basin, Kerala, India.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25982612 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
In the present time, energy crises is considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which heat recovery system generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.
Keywords: Solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21312611 Traumatic Ankle Pain: Adequacy of Clinical Information in X-Ray Request with Reference to the Ottawa Ankle Rule
Authors: Rania Mustafa
Abstract:
This audit was conducted at Manchester University NHS Foundation Trust, Wythenshawe Hospital Radiology and Accident and Emergency [A&E] Department to assess the appropriateness of clinical information in X-ray requests, specifically in cases of acute ankle injuries. As per the Ottawa Ankle Rules and the recommendations of National Institute for Health and Care Excellence [NICE] and the Royal College of Radiology, we aimed to evaluate the appropriateness of referrals and the thoroughness of clinical information provided by Emergency Department [ED] clinicians for ankle radiography. Our goal was to achieve 100% compliance with these guidelines. The audit involved a comprehensive analysis spanning the period from August 2022 to January 2023, encompassing patient records, radiographic orders, and clinical assessments. Data collection included patient demographics, presenting complaints, clinical assessments, adherence to Ottawa Ankle Rules criteria, and subsequent radiography orders. Here we conducted two audit cycles, involving 38 patients in the first cycle and 86 patients in the second cycle. The data were furtherly filtered to include all patients who were referred from the ED for an ankle Xray with a history of acute trauma and age of more than 18 years. The key finding was that in August 2022, 60% of cases met the Ottawa Ankle Rules criteria accurately, indicating a need for improvement in adherence. However, by January 2023, there was a notable improvement, with 95% of cases accurately meeting the criteria. This significant change reflects an increased alignment with best practices for ankle radiography referrals.
Keywords: Ankle, injuries, Ottawa Ankle Rule, X-rays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2902610 LIDAR Obstacle Warning and Avoidance System for Unmanned Aircraft
Authors: Roberto Sabatini, Alessandro Gardi, Mark A. Richardson
Abstract:
The availability of powerful eye-safe laser sources and the recent advancements in electro-optical and mechanical beam-steering components have allowed laser-based Light Detection and Ranging (LIDAR) to become a promising technology for obstacle warning and avoidance in a variety of manned and unmanned aircraft applications. LIDAR outstanding angular resolution and accuracy characteristics are coupled to its good detection performance in a wide range of incidence angles and weather conditions, providing an ideal obstacle avoidance solution, which is especially attractive in low-level flying platforms such as helicopters and small-to-medium size Unmanned Aircraft (UA). The Laser Obstacle Avoidance Marconi (LOAM) system is one of such systems, which was jointly developed and tested by SELEX-ES and the Italian Air Force Research and Flight Test Centre. The system was originally conceived for military rotorcraft platforms and, in this paper, we briefly review the previous work and discuss in more details some of the key development activities required for integration of LOAM on UA platforms. The main hardware and software design features of this LOAM variant are presented, including a brief description of the system interfaces and sensor characteristics, together with the system performance models and data processing algorithms for obstacle detection, classification and avoidance. In particular, the paper focuses on the algorithm proposed for optimal avoidance trajectory generation in UA applications.
Keywords: LIDAR, Low-Level Flight, Nap-of-the-Earth Flight, Near Infra-Red, Obstacle Avoidance, Obstacle Detection, Obstacle Warning System, Sense and Avoid, Trajectory Optimisation, Unmanned Aircraft.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70852609 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts
Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi
Abstract:
The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.
Keywords: Biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6162608 Comparative Review of Modulation Techniques for Harmonic Minimization in Multilevel Inverter
Authors: M. Suresh Kumar, K. Ramani
Abstract:
This paper proposed the comparison made between Multi-Carrier Pulse Width Modulation, Sinusoidal Pulse Width Modulation and Selective Harmonic Elimination Pulse Width Modulation technique for minimization of Total Harmonic Distortion in Cascaded H-Bridge Multi-Level Inverter. In Multicarrier Pulse Width Modulation method by using Alternate Position of Disposition scheme for switching pulse generation to Multi-Level Inverter. Another carrier based approach; Sinusoidal Pulse Width Modulation method is also implemented to define the switching pulse generation system in the multi-level inverter. In Selective Harmonic Elimination method using Genetic Algorithm and Particle Swarm Optimization algorithm for define the required switching angles to eliminate low order harmonics from the inverter output voltage waveform and reduce the total harmonic distortion value. So, the results validate that the Selective Harmonic Elimination Pulse Width Modulation method does capably eliminate a great number of precise harmonics and minimize the Total Harmonic Distortion value in output voltage waveform in compared with Multi-Carrier Pulse Width Modulation method, Sinusoidal Pulse Width Modulation method. In this paper, comparison of simulation results shows that the Selective Harmonic Elimination method can attain optimal harmonic minimization solution better than Multi-Carrier Pulse Width Modulation method, Sinusoidal Pulse Width Modulation method.Keywords: Multi-level inverter, Selective Harmonic Elimination Pulse Width Modulation, Multi-Carrier Pulse Width Modulation, Total Harmonic Distortion, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29762607 Knowledge Transfer among Cross-Functional Teams as a Continual Improvement Process
Authors: Sergio Mauricio Pérez López, Luis Rodrigo Valencia Pérez, Juan Manuel Peña Aguilar, Adelina Morita Alexander
Abstract:
The culture of continuous improvement in organizations is very important as it represents a source of competitive advantage. This article discusses the transfer of knowledge between companies which formed cross-functional teams and used a dynamic model for knowledge creation as a framework. In addition, the article discusses the structure of cognitive assets in companies and the concept of "stickiness" (which is defined as an obstacle to the transfer of knowledge). The purpose of this analysis is to show that an improvement in the attitude of individual members of an organization creates opportunities, and that an exchange of information and knowledge leads to generating continuous improvements in the company as a whole. This article also discusses the importance of creating the proper conditions for sharing tacit knowledge. By narrowing gaps between people, mutual trust can be created and thus contribute to an increase in sharing. The concept of adapting knowledge to new environments will be highlighted, as it is essential for companies to translate and modify information so that such information can fit the context of receiving organizations. Adaptation will ensure that the transfer process is carried out smoothly by preventing "stickiness". When developing the transfer process on cross-functional teams (as opposed to working groups), the team acquires the flexibility and responsiveness necessary to meet objectives. These types of cross-functional teams also generate synergy due to the array of different work backgrounds of their individuals. When synergy is established, a culture of continuous improvement is created.Keywords: Knowledge transfer, continuous improvement, teamwork, cognitive assets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17012606 Wavelet Based Qualitative Assessment of Femur Bone Strength Using Radiographic Imaging
Authors: Sundararajan Sangeetha, Joseph Jesu Christopher, Swaminathan Ramakrishnan
Abstract:
In this work, the primary compressive strength components of human femur trabecular bone are qualitatively assessed using image processing and wavelet analysis. The Primary Compressive (PC) component in planar radiographic femur trabecular images (N=50) is delineated by semi-automatic image processing procedure. Auto threshold binarization algorithm is employed to recognize the presence of mineralization in the digitized images. The qualitative parameters such as apparent mineralization and total area associated with the PC region are derived for normal and abnormal images.The two-dimensional discrete wavelet transforms are utilized to obtain appropriate features that quantify texture changes in medical images .The normal and abnormal samples of the human femur are comprehensively analyzed using Harr wavelet.The six statistical parameters such as mean, median, mode, standard deviation, mean absolute deviation and median absolute deviation are derived at level 4 decomposition for both approximation and horizontal wavelet coefficients. The correlation coefficient of various wavelet derived parameters with normal and abnormal for both approximated and horizontal coefficients are estimated. It is seen that in almost all cases the abnormal show higher degree of correlation than normals. Further the parameters derived from approximation coefficient show more correlation than those derived from the horizontal coefficients. The parameters mean and median computed at the output of level 4 Harr wavelet channel was found to be a useful predictor to delineate the normal and the abnormal groups.Keywords: Image processing, planar radiographs, trabecular bone and wavelet analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14932605 Estimation Model for Concrete Slump Recovery by Using Superplasticizer
Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert
Abstract:
This paper aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%-1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameters, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original.Keywords: Estimation model, second superplasticizer dosage, slump loss, slump recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19162604 Body Composition Response to Lower Body Positive Pressure Training in Obese Children
Authors: Basant H. El-Refay, Nabeel T. Faiad
Abstract:
Background: The high prevalence of obesity in Egypt has a great impact on the health care system, economic and social situation. Evidence suggests that even a moderate amount of weight loss can be useful. Aim of the study: To analyze the effects of lower body positive pressure supported treadmill training, conducted with hypocaloric diet, on body composition of obese children. Methods: Thirty children aged between 8 and 14 years, were randomly assigned into two groups: intervention group (15 children) and control group (15 children). All of them were evaluated using body composition analysis through bioelectric impedance. The following parameters were measured before and after the intervention: body mass, body fat mass, muscle mass, body mass index (BMI), percentage of body fat and basal metabolic rate (BMR). The study group exercised with antigravity treadmill three times a week during 2 months, and participated in a hypocaloric diet program. The control group participated in a hypocaloric diet program only. Results: Both groups showed significant reduction in body mass, body fat mass and BMI. Only study group showed significant reduction in percentage of body fat (p = 0.0.043). Changes in muscle mass and BMR didn't reach statistical significance in both groups. No significant differences were observed between groups except for muscle mass (p = 0.049) and BMR (p = 0.042) favoring study group. Conclusion: Both programs proved effective in the reduction of obesity indicators, but lower body positive pressure supported treadmill training was more effective in improving muscle mass and BMR.
Keywords: Children, Hypocaloric diet, Lower body positive pressure supported treadmill, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43242603 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences
Authors: C. Xavier Mendieta, J. J McArthur
Abstract:
Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.Keywords: Building archetypes, data analysis, energy benchmarks, GHG emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10242602 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle
Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores, Valentin Soloiu
Abstract:
This work describes a system that uses electromyography (EMG) signals obtained from muscle sensors and an Artificial Neural Network (ANN) for signal classification and pattern recognition that is used to control a small unmanned aerial vehicle using specific arm movements. The main objective of this endeavor is the development of an intelligent interface that allows the user to control the flight of a drone beyond direct manual control. The sensor used were the MyoWare Muscle sensor which contains two EMG electrodes used to collect signals from the posterior (extensor) and anterior (flexor) forearm, and the bicep. The collection of the raw signals from each sensor was performed using an Arduino Uno. Data processing algorithms were developed with the purpose of classifying the signals generated by the arm’s muscles when performing specific movements, namely: flexing, resting, and motion of the arm. With these arm motions roll control of the drone was achieved. MATLAB software was utilized to condition the signals and prepare them for the classification. To generate the input vector for the ANN and perform the classification, the root mean square and the standard deviation were processed for the signals from each electrode. The neuromuscular information was trained using an ANN with a single 10 neurons hidden layer to categorize the four targets. The result of the classification shows that an accuracy of 97.5% was obtained. Afterwards, classification results are used to generate the appropriate control signals from the computer to the drone through a Wi-Fi network connection. These procedures were successfully tested, where the drone responded successfully in real time to the commanded inputs.
Keywords: Biosensors, electromyography, Artificial Neural Network, Arduino, drone flight control, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5562601 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images
Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn
Abstract:
The detection and segmentation of mitochondria from fluorescence microscopy is crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. Although there exists a number of open-source software tools and artificial intelligence (AI) methods designed for analyzing mitochondrial images, the availability of only a few combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compactibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source Python and OpenCV library, the algorithms are implemented in three stages: pre-processing; image binarization; and coarse-to-fine segmentation. The proposed model is validated using the fluorescence mitochondrial dataset. Ground truth labels generated using Labkit were also used to evaluate the performance of our detection and segmentation model using precision, recall and rand index. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks concludes the paper.
Keywords: 2D, Binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4722600 Development of a Telemedical Network Supporting an Automated Flow Cytometric Analysis for the Clinical Follow-up of Leukaemia
Authors: Claude Takenga, Rolf-Dietrich Berndt, Erling Si, Markus Diem, Guohui Qiao, Melanie Gau, Michael Brandstoetter, Martin Kampel, Michael Dworzak
Abstract:
In patients with acute lymphoblastic leukaemia (ALL), treatment response is increasingly evaluated with minimal residual disease (MRD) analyses. Flow Cytometry (FCM) is a fast and sensitive method to detect MRD. However, the interpretation of these multi-parametric data requires intensive operator training and experience. This paper presents a pipeline-software, as a ready-to-use FCM-based MRD-assessment tool for the daily clinical practice for patients with ALL. The new tool increases accuracy in assessment of FCM-MRD in samples which are difficult to analyse by conventional operator-based gating since computer-aided analysis potentially has a superior resolution due to utilization of the whole multi-parametric FCM-data space at once instead of step-wise, two-dimensional plot-based visualization. The system developed as a telemedical network reduces the work-load and lab-costs, staff-time needed for training, continuous quality control, operator-based data interpretation. It allows dissemination of automated FCM-MRD analysis to medical centres which have no established expertise for the benefit of an even larger community of diseased children worldwide. We established a telemedical network system for analysis and clinical follow-up and treatment monitoring of Leukaemia. The system is scalable and adapted to link several centres and laboratories worldwide.Keywords: Data security, flow cytometry, leukaemia, telematics platform, telemedicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15682599 Friction Stir Welded Joint Aluminum Alloy H20-H20 with Different Type of Tools Mechanical Properties
Authors: Omid A. Zargar
Abstract:
In this project three type of tools, straight cylindrical, taper cylindrical and triangular tool all made of High speed steel (Wc-Co) used for the friction stir welding (FSW) aluminum alloy H20–H20 and the mechanical properties of the welded joint tested by tensile test and vicker hardness test. Besides, mentioned mechanical properties compared with each other to make conclusion. The result helped design of welding parameter optimization for different types of friction stir process like rotational speed, depth of welding, travel speed, type of material, type of joint, work piece dimension, joint dimension, tool material and tool geometry. Previous investigations in different types of materials work pieces; joint type, machining parameter and preheating temperature take placed. In this investigation 3 mentioned tool types that are popular in FSW tested and the results completed other aspects of the process. Hope this paper can open a new horizon in experimental investigation of mechanical properties for friction stir welded joint with other different type of tools like oval shape probe, paddle shape probe, three flat sided probe, and three sided re-entrant probe and other materials and alloys like titanium or steel in near future.
Keywords: Friction stir welding (FSW), tool, CNC milling machine, aluminum alloy H20, Vickers hardness test, tensile test, straight cylindrical tool, taper cylindrical tool, triangular tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28662598 A Tribe, a County, and a Casino: Socioeconomic Disparities between the Mohegan Tribe and New London County through Two Decades
Authors: Michaela Wang
Abstract:
Since British established colonial settlements across the East Coast, Native Americans have suffered stark socio economic disparities in comparison to their neighboring communities. This paper employs the 1990, 2000, and 2010 United States Decennial Census to assess whether and to what extent the casino economy helped to close this socioeconomic gap between the Mohegan tribe and its surrounding community. These three Decennial Censuses cover two decades, from six years prior to the erection of Mohegan Sun casino to 14 years afterwards, including the Great Recession 2007-2009. Income, employment, education and housing parameters are selected as socio economic indicators. The profitable advent of the Mohegan Sun in 1996 dramatically improved the socio economic status of the Mohegan Tribe between 1990 and 2000. In fact, for most of these indicators––poverty, median household income, employment, home ownership, and car ownership––disparities shifted; tribal socioeconomic parameters improved from well below the level of New London County in 1990, to the same level or above the county rates in 2000. However, economic downturn in 2007-2009 Great Recession impacted Mohegan people remarkably. By 2010, disparities for household income, employment, home ownership, and car ownership returned. The casino bridged socio economic inequalities, but at the face of economic crises, the mono-product economy grew vulnerable.Keywords: Indigenous tribe, socio economic inequalities, casino, native American.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5952597 Comparative Parametric and Emission Characteristics of Single Cylinder Spark Ignition Engine Using Gasoline, Ethanol, and H₂O as Micro Emulsion Fuels
Authors: Ufaith Qadri, M Marouf Wani
Abstract:
In this paper, the performance and emission characteristics of a Single Cylinder Spark Ignition engine have been investigated. The research is based on micro emulsion application as fuel in a gasoline engine. We have analyzed many micro emulsion compositions in various proportions, for predicting the performance of the Spark Ignition engine. This new technology of fuel modifications is emerging very rapidly as lot of research is going on in the field of micro emulsion fuels in Compression Ignition engines, but the micro emulsion fuel used in a Gasoline engine is very rare. The use of micro emulsion as fuel in a Spark Ignition engine is virtually unexplored. So, our main goal is to see the performance and emission characteristics of micro emulsions as fuel, in Spark Ignition engines, and finding which composition is more efficient. In this research, we have used various micro emulsion fuels whose composition varies for all the three blends, and their performance and emission characteristic were predicted in AVL Boost software. Conventional Gasoline fuel 90%, 80% and 85% were blended with co-surfactant Ethanol in different compositions, and water was used as an additive for making it crystal clear transparent micro emulsion fuel, which is thermodynamically stable. By comparing the performances of engines, the power has shown similarity for micro emulsion fuel and conventional Gasoline fuel. On the other hand, Torque and BMEP shows increase for all the micro emulsion fuels. Micro emulsion fuel shows higher thermal efficiency and lower Specific Fuel Consumption for all the compositions as compared to the Gasoline fuel. Carbon monoxide and Hydro carbon emissions were also measured. The result shows that emissions decrease for all the composition of micro emulsion fuels, and proved to be the most efficient fuel both in terms of performance and emission characteristics.
Keywords: AVL Boost, emissions, micro emulsion, performance, SI engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8522596 The Impact of Digital Inclusive Finance on the High-Quality Development of China's Export Trade
Authors: Yao Wu
Abstract:
In the context of financial globalization, China has put forward the policy goal of high-quality development, and the digital economy, with its advantage of information resources, is driving China's export trade to achieve high-quality development. Due to the long-standing financing constraints of small and medium-sized export enterprises, how to expand the export scale of small and medium-sized enterprises has become a major threshold for the development of China's export trade. This paper firstly adopts the hierarchical analysis method to establish the evaluation system of high-quality development of China's export trade; secondly, the panel data of 30 provinces in China from 2011 to 2018 are selected for empirical analysis to establish the impact model of digital inclusive finance on the high-quality development of China's export trade; based on the analysis of the heterogeneous enterprise trade model, a mediating effect model is established to verify the mediating role of credit constraint in the development of high-quality export trade in China. Based on the above analysis, this paper concludes that inclusive digital finance, with its unique digital and inclusive nature, alleviates the credit constraint problem among SMEs, enhances the binary marginal effect of SMEs' exports, optimizes their export scale and structure, and promotes the high-quality development of regional and even national export trade. Finally, based on the findings of this paper, we propose insights and suggestions for inclusive digital finance to promote the high-quality development of export trade.
Keywords: Digital inclusive finance, high-quality development of export trade, fixed effects, binary marginal effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7072595 Metal Inert Gas Welding-Based-Shaped Metal Deposition in Additive Layered Manufacturing: A Review
Authors: Adnan A. Ugla, Hassan J. Khaudair, Ahmed R. J. Almusawi
Abstract:
Shaped Metal Deposition (SMD) in additive layered manufacturing technique is a promising alternative to traditional manufacturing used for manufacturing large, expensive metal components with complex geometry in addition to producing free structures by building materials in a layer by layer technique. The present paper is a comprehensive review of the literature and the latest rapid manufacturing technologies of the SMD technique. The aim of this paper is to comprehensively review the most prominent facts that researchers have dealt with in the SMD techniques especially those associated with the cold wire feed. The intent of this study is to review the literature presented on metal deposition processes and their classifications, including SMD process using Wire + Arc Additive Manufacturing (WAAM) which divides into wire + tungsten inert gas (TIG), metal inert gas (MIG), or plasma. This literary research presented covers extensive details on bead geometry, process parameters and heat input or arc energy resulting from the deposition process in both cases MIG and Tandem-MIG in SMD process. Furthermore, SMD may be done using Single Wire-MIG (SW-MIG) welding and SMD using Double Wire-MIG (DW-MIG) welding. The present review shows that the method of deposition of metals when using the DW-MIG process can be considered a distinctive and low-cost method to produce large metal components due to high deposition rates as well as reduce the input of high temperature generated during deposition and reduce the distortions. However, the accuracy and surface finish of the MIG-SMD are less as compared to electron and laser beam.
Keywords: Shaped metal deposition, additive manufacturing, double-wire feed, cold feed wire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13972594 Quality of Bali Beef and Broiler after Immersion in Liquid Smoke on Different Concentrations and Storage Times
Authors: E. Abustam, M. Yusuf, H. M. Ali, M. I. Said, F. N. Yuliati
Abstract:
The aim of this study was to improve the durability and quality of Bali beef (M. Longissimus dorsi) and broiler carcass through the addition of liquid smoke as a natural preservative. This study was using Longissimus dorsi muscle from male Bali beef aged 3 years, broiler breast and thigh aged 40 days. Three types of meat were marinated in liquid smoke with concentrations of 0, 5, and 10% for 30 minutes at the level of 20% of the sample weight (w/w). The samples were storage at 2-5°C for 1 month. This study designed as a factorial experiment 3 x 3 x 4 based on a completely randomized design with 5 replications; the first factor was meat type (beef, chicken breast and chicken thigh); the 2nd factor was liquid smoke concentrations (0, 5, and 10%), and the 3rd factor was storage duration (1, 2, 3, and 4 weeks). Parameters measured were TBA value, total bacterial colonies, water holding capacity (WHC), shear force value both before and after cooking (80°C – 15min.), and cooking loss. The results showed that the type of meat produced WHC, shear force value, cooking loss and TBA differed between the three types of meat. Higher concentration of liquid smoke, the WHC, shear force value, TBA, and total bacterial colonies were decreased; at a concentration of 10% of liquid smoke, the total bacterial colonies decreased by 57.3% from untreated with liquid smoke. Longer storage, the total bacterial colonies and WHC were increased, while the shear force value and cooking loss were decreased. It can be concluded that a 10% concentration of liquid smoke was able to maintain fat oxidation and bacterial growth in Bali beef and chicken breast and thigh.Keywords: Bali beef, chicken meat, liquid smoke, meat quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15482593 Disparities versus Similarities: WHO GPPQCL and ISO/IEC 17025:2017 International Standards for Quality Management Systems in Pharmaceutical Laboratories
Authors: M. A. Okezue, K. L. Clase, S. R. Byrn, P. Shivanand
Abstract:
Medicines regulatory authorities expect pharmaceutical companies and contract research organizations to seek ways to certify that their laboratory control measurements are reliable. Establishing and maintaining laboratory quality standards are essential in ensuring the accuracy of test results. ‘ISO/IEC 17025:2017’ and ‘WHO Good Practices for Pharmaceutical Quality Control Laboratories (GPPQCL)’ are two quality standards commonly employed in developing laboratory quality systems. A review was conducted on the two standards to elaborate on areas on convergence and divergence. The goal was to understand how differences in each standard's requirements may influence laboratories' choices as to which document is easier to adopt for quality systems. A qualitative review method compared similar items in the two standards while mapping out areas where there were specific differences in the requirements of the two documents. The review also provided a detailed description of the clauses and parts covering management and technical requirements in these laboratory standards. The review showed that both documents share requirements for over ten critical areas covering objectives, infrastructure, management systems, and laboratory processes. There were, however, differences in standard expectations where GPPQCL emphasizes system procedures for planning and future budgets that will ensure continuity. Conversely, ISO 17025 was more focused on the risk management approach to establish laboratory quality systems. Elements in the two documents form common standard requirements to assure the validity of laboratory test results that promote mutual recognition. The ISO standard currently has more global patronage than GPPQCL.
Keywords: ISO/IEC 17025:2017, laboratory standards, quality control, WHO GPPQCL
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11252592 Efficient Compact Micro DBD Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems
Authors: Kuvshinov, D., Siswanto, A., Lozano-Parada, J., Zimmerman, W. B.
Abstract:
Ozone is well known as a powerful, fast reacting oxidant. Ozone based processes produce no by-product residual as non-reacted ozone decomposes to molecular oxygen. Therefore an application of ozone is widely accepted as one of the main approaches for a Sustainable and Clean Technologies development.
There are number of technologies which require ozone to be delivered to specific points of a production network or reactors construction. Due to space constraints, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units.
Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented.
At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28*10-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure.
The MROG construction makes it applicable for both submerged and dry systems. With a robust compact design MROG can be used as an integrated module for production lines of high complexity.
Keywords: DBD, micro reactor, ozone, plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30042591 Improvement of Frictional Coefficient of Modified Shoe Soles onto Icy and Snowy Road by Tilting of Added Glass Fibers into Rubber
Authors: Shunya Wakayama, Kazuya Okubo, Toru Fujii, Daisuke Sakata, Noriyuki Kado, Hiroshi Furutachi
Abstract:
The purpose of this study is to propose an effective method to improve frictional coefficient between shoe rubber soles with added glass fibers and the surfaces of icy and snowy road in order to prevent slip-and-fall accidents by the users. The additional fibers into the rubber were uniformly tilted to the perpendicular direction of the frictional surface, where tilting angles were -60, -30, +30, +60, 90 degrees and 0 (as normal specimen), respectively. It was found that parallel arraignment was effective to improve the frictional coefficient when glass fibers were embedded in the shoe rubber, while perpendicular to normal direction of the embedded glass fibers on the shoe surface was also effective to do that once after they were exposed from the shoe rubber with its abrasion. These improvements were explained by the increase of stiffness against the shear deformation of the rubber at critical frictional state and adequate scratching of fibers when fibers were protruded in perpendicular to frictional direction, respectively. Most effective angle of tilting of frictional coefficient between rubber specimens and a stone was perpendicular (= 0 degree) to frictional direction. Combinative modified rubber specimen having 2 layers was fabricated where tilting angle of protruded fibers was 0 degree near the contact surface and tilting angle of embedded fibers was 90 degrees near back surface in thickness direction to further improve the frictional coefficient. Current study suggested that effective arraignments in tilting angle of the added fibers should be applied in designing rubber shoe soles to keep the safeties for users in regions of cold climates.Keywords: Frictional coefficient, icy and snowy road, shoe rubber soles, tilting angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701