Search results for: feature extraction
1186 Genetic Algorithms and Kernel Matrix-based Criteria Combined Approach to Perform Feature and Model Selection for Support Vector Machines
Authors: A. Perolini
Abstract:
Feature and model selection are in the center of attention of many researches because of their impact on classifiers- performance. Both selections are usually performed separately but recent developments suggest using a combined GA-SVM approach to perform them simultaneously. This approach improves the performance of the classifier identifying the best subset of variables and the optimal parameters- values. Although GA-SVM is an effective method it is computationally expensive, thus a rough method can be considered. The paper investigates a joined approach of Genetic Algorithm and kernel matrix criteria to perform simultaneously feature and model selection for SVM classification problem. The purpose of this research is to improve the classification performance of SVM through an efficient approach, the Kernel Matrix Genetic Algorithm method (KMGA).Keywords: Feature and model selection, Genetic Algorithms, Support Vector Machines, kernel matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15981185 Technologies of Isolation and Separation of Anthraquinone Derivatives
Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina
Abstract:
In review the generalized data about different methods of extraction, separation and purification of natural and modify anthraquinones is presented. The basic regularity of an isolation process is analyzed. Action of temperature, pH, and polarity of extragent, catalysts and other factors on an isolation process is revealed.
Keywords: Anthraquinones, chromatography, extraction, phytopreparation, precipitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7061184 Extracting Road Signs using the Color Information
Authors: Wen-Yen Wu, Tsung-Cheng Hsieh, Ching-Sung Lai
Abstract:
In this paper, we propose a method to extract the road signs. Firstly, the grabbed image is converted into the HSV color space to detect the road signs. Secondly, the morphological operations are used to reduce noise. Finally, extract the road sign using the geometric property. The feature extraction of road sign is done by using the color information. The proposed method has been tested for the real situations. From the experimental results, it is seen that the proposed method can extract the road sign features effectively.Keywords: Color information, image processing, road sign.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22431183 Extraction of Squalene from Lebanese Olive Oil
Authors: Henri El Zakhem, Christina Romanos, Charlie Bakhos, Hassan Chahal, Jessica Koura
Abstract:
Squalene is a valuable component of the oil composed of 30 carbon atoms and is mainly used for cosmetic materials. The main concern of this article is to study the Squalene composition in the Lebanese olive oil and to compare it with foreign oil results. To our knowledge, extraction of Squalene from the Lebanese olive oil has not been conducted before. Three different techniques were studied and experiments were performed on three brands of olive oil, Al Wadi Al Akhdar, Virgo Bio and Boulos. The techniques performed are the Fractional Crystallization, the Soxhlet and the Esterification. By comparing the results, it is found that the Lebanese oil contains squalene and Soxhlet method is the most effective between the three methods extracting about 6.5E-04 grams of Squalene per grams of olive oil.
Keywords: Squalene, extraction, crystallization, Soxhlet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23071182 Laboratory Scale Extraction of Sugar Cane using High Electric Field Pulses
Authors: M. N. Eshtiaghi, N. Yoswathana
Abstract:
The aim of this study was to extract sugar from sugarcane using high electric field pulse (HELP) as a non-thermal cell permeabilization method. The result of this study showed that it is possible to permeablize sugar cane cells using HELP at very short times (less than 10 sec.) and at room temperature. Increasing the field strength (from 0.5kV/cm to 2kV/cm) and pulse number (1 to 12) led to increasing the permeabilization of sugar cane cells. The energy consumption during HELP treatment of sugar cane (2.4 kJ/kg) was about 100 times less compared to thermal cell disintegration at 85 <=C (about 271.7 kJ/kg). In addition, it was possible to extract sugar cane at a moderate temperature (45 <=C) using HELP pretreatment. With combination of HELP pretreatment followed by thermal extraction at 75 <=C, extraction resulted in up to 3% more sugar (on the basis of total extractable sugar) compared to samples without HELP pretreatment.Keywords: Cell permeabilization, High electric field pulses, Non-thermal processing, Sugar cane extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27491181 Hybrid Color-Texture Space for Image Classification
Authors: Hassan El Maia, Ahmed Hammouch, Driss Aboutajdine
Abstract:
This work presents an approach for the construction of a hybrid color-texture space by using mutual information. Feature extraction is done by the Laws filter with SVM (Support Vectors Machine) as a classifier. The classification is applied on the VisTex database and a SPOT HRV (XS) image representing two forest areas in the region of Rabat in Morocco. The result of classification obtained in the hybrid space is compared with the one obtained in the RGB color space.
Keywords: Color, texture, laws filter, mutual information, SVM, hybrid space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18291180 Evolving Knowledge Extraction from Online Resources
Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao
Abstract:
In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.Keywords: Evolving learning, knowledge extraction, knowledge graph, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9421179 Water Budget in High Drought-Borne Area in Jaffna District, Sri Lanka during Dry Season
Authors: R. Kandiah, K. Miyamoto
Abstract:
In Sri Lanka, the Jaffna area is a high drought affected area and depends mainly on groundwater aquifers for water needs. Water for daily activities is extracted from wells. As households manually extract water from the wells, it is not drawn from mid evening to early morning. The water inflow at night provides the maximum water level that decreases during the daytime due to extraction. The storage volume of water in wells is limited or at its lowest level during the dry season. This study analyzes the domestic water budget during the dry season in the Jaffna area. In order to evaluate the water inflow rate into wells, storage volume and extraction volume from wells over time, water pressure is measured at the bottom of three wells, which are located in coastal area denoted as well A, in nonspecific area denoted as well B, and agricultural area denoted as well C. The water quality at the wells A, B, and C, are mostly fresh, modest fresh, and saline respectively. From the monitoring, we can find that the daily inflow amount of water into the wells and daily water extraction depend on each other, that is, higher extraction yields higher inflow. And, in the dry season, the daily inflow volume and the daily extraction volume of each well are almost in balance.
Keywords: Domestic water, water balance, water budget, ground water, shallow well.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12201178 Phenolic Content and Antioxidant Activity Determination in Broccoli and Lamb’s Lettuce
Authors: C. P. Parente, M. J. Reis Lima, E. Teixeira-Lemos, M. M. Moreira, Aquiles A. Barros, Luís F. Guido
Abstract:
Broccoli has been widely recognized as a wealthy vegetable which contains multiple nutrients with potent anti-cancer properties. Lamb’s lettuce has been used as food for many centuries but only recently became commercially available and literature is therefore exiguous concerning these vegetables. The aim of this work was to evaluate the influence of the extraction conditions on the yield of phenolic compounds and the corresponding antioxidant capacity of broccoli and lamb’s lettuce. The results indicate that lamb’s lettuce, compared to broccoli, contains simultaneously a large amount of total polyphenols as well as high antioxidant activity. It is clearly demonstrated that extraction solvent significantly influences the antioxidant activity. Methanol is the solvent that can globally maximize the antioxidant extraction yield. The results presented herein prove lamb’s lettuce as a very interesting source of polyphenols, and thus a potential health-promoting food.
Keywords: Broccoli, lamb’s lettuce, extraction, antioxidant activity, phenolic compounds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38251177 Object Tracking in Motion Blurred Images with Adaptive Mean Shift and Wavelet Feature
Authors: Iman Iraei, Mina Sharifi
Abstract:
A method for object tracking in motion blurred images is proposed in this article. This paper shows that object tracking could be improved with this approach. We use mean shift algorithm to track different objects as a main tracker. But, the problem is that mean shift could not track the selected object accurately in blurred scenes. So, for better tracking result, and increasing the accuracy of tracking, wavelet transform is used. We use a feature named as blur extent, which could help us to get better results in tracking. For calculating of this feature, we should use Harr wavelet. We can look at this matter from two different angles which lead to determine whether an image is blurred or not and to what extent an image is blur. In fact, this feature left an impact on the covariance matrix of mean shift algorithm and cause to better performance of tracking. This method has been concentrated mostly on motion blur parameter. transform. The results reveal the ability of our method in order to reach more accurately tracking.Keywords: Mean shift, object tracking, blur extent, wavelet transform, motion blur.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8141176 Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).
Keywords: Housing data, feature selection, random forest, Boruta algorithm, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17181175 Moving Vehicles Detection Using Automatic Background Extraction
Authors: Saad M. Al-Garni, Adel A. Abdennour
Abstract:
Vehicle detection is the critical step for highway monitoring. In this paper we propose background subtraction and edge detection technique for vehicle detection. This technique uses the advantages of both approaches. The practical applications approved the effectiveness of this method. This method consists of two procedures: First, automatic background extraction procedure, in which the background is extracted automatically from the successive frames; Second vehicles detection procedure, which depend on edge detection and background subtraction. Experimental results show the effective application of this algorithm. Vehicles detection rate was higher than 91%.
Keywords: Image processing, Automatic background extraction, Moving vehicle detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24291174 An Efficient Graph Query Algorithm Based on Important Vertices and Decision Features
Authors: Xiantong Li, Jianzhong Li
Abstract:
Graph has become increasingly important in modeling complicated structures and schemaless data such as proteins, chemical compounds, and XML documents. Given a graph query, it is desirable to retrieve graphs quickly from a large database via graph-based indices. Different from the existing methods, our approach, called VFM (Vertex to Frequent Feature Mapping), makes use of vertices and decision features as the basic indexing feature. VFM constructs two mappings between vertices and frequent features to answer graph queries. The VFM approach not only provides an elegant solution to the graph indexing problem, but also demonstrates how database indexing and query processing can benefit from data mining, especially frequent pattern mining. The results show that the proposed method not only avoids the enumeration method of getting subgraphs of query graph, but also effectively reduces the subgraph isomorphism tests between the query graph and graphs in candidate answer set in verification stage.Keywords: Decision Feature, Frequent Feature, Graph Dataset, Graph Query
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18741173 Effects of Pressure and Temperature on the Extraction of Benzyl Isothiocyanate by Supercritical Fluids from Tropaeolum majus L. Leaves
Authors: Espinoza S. Clara, Gamarra Q. Flor, Marianela F. Ramos Quispe S. Miguel, Flores R. Omar
Abstract:
Tropaeolum majus L. is a native plant to South and Central America, used since ancient times by our ancestors to combat different diseases. Glucotropaeolonin is one of its main components, which when hydrolyzed, forms benzyl isothiocyanate (BIT) that promotes cellular apoptosis (programmed cell death in cancer cells). Therefore, the present research aims to evaluate the effect of the pressure and temperature of BIT extraction by supercritical CO2 from Tropaeolum majus L. The extraction was carried out in a supercritical fluid extractor equipment Speed SFE BASIC Brand: Poly science, the leaves of Tropaeolum majus L. were ground for one hour and lyophilized until obtaining a humidity of 6%. The extraction with supercritical CO2 was carried out with pressures of 200 bar and 300 bar, temperatures of 50°C, 60°C and 70°C, obtained by the conjugation of these six treatments. BIT was identified by thin layer chromatography using 98% BIT as the standard, and as the mobile phase hexane: dichloromethane (4:2). Subsequently, BIT quantification was performed by high performance liquid chromatography (HPLC). The highest yield of oleoresin by supercritical CO2 extraction was obtained pressure 300 bar and temperature at 60°C; and the higher content of BIT at pressure 200 bar and 70°C for 30 minutes to obtain 113.615 ± 0.03 mg BIT/100 g dry matter was obtained.
Keywords: Tropaeolum majus L., supercritical fluids, benzyl isothiocyanate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8801172 Face Recognition Using Eigen face Coefficients and Principal Component Analysis
Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Samriti Jindal, Inderpreet Kaur, Shilpi Kumari
Abstract:
Face Recognition is a field of multidimensional applications. A lot of work has been done, extensively on the most of details related to face recognition. This idea of face recognition using PCA is one of them. In this paper the PCA features for Feature extraction are used and matching is done for the face under consideration with the test image using Eigen face coefficients. The crux of the work lies in optimizing Euclidean distance and paving the way to test the same algorithm using Matlab which is an efficient tool having powerful user interface along with simplicity in representing complex images.Keywords: Eigen Face, Multidimensional, Matching, PCA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28701171 Leaching Characteristics of Upgraded Copper Flotation Tailings
Authors: Mercy M. Ramakokovhu, Henry Kasaini, Richard K.K. Mbaya
Abstract:
The copper flotation tailings from Konkola Copper mine in Nchanga, Zambia were used in the study. The purpose of this study was to determine the leaching characteristics of the tailings material prior and after the physical beneficiation process is employed. The Knelson gravity concentrator (KC-MD3) was used for the beneficiation process. The copper leaching efficiencies and impurity co-extraction percentages in both the upgraded and the raw feed material were determined at different pH levels and temperature. It was observed that the copper extraction increased with an increase in temperature and a decrease in pH levels. In comparison to the raw feed sample, the upgraded sample reported a maximum copper extraction of 69% which was 9%, higher than raw feed % extractions. The impurity carry over was reduced from 18% to 4 % on the upgraded sample. The reduction in impurity co-extraction was as a result of the removal of the reactive gangue elements during the upgrading process, this minimized the number of side reaction occurring during leaching.Keywords: Atmospheric leaching, Copper, Iron, Knelson concentrator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29091170 Bamboo Fibre Extraction and Its Reinforced Polymer Composite Material
Authors: P. Zakikhani, R. Zahari, M. T. H. Sultan, D. L. Majid
Abstract:
Natural plant fibres reinforced polymeric composite materials have been used in many fields of our lives to save the environment. Especially, bamboo fibres due to its environmental sustainability, mechanical properties, and recyclability have been utilized as reinforced polymer matrix composite in construction industries. In this review study bamboo structure and three different methods such as mechanical, chemical and combination of mechanical and chemical to extract fibres from bamboo are summarized. Each extraction method has been done base on the application of bamboo. In addition Bamboo fibre is compared with glass fibre from various aspects and in some parts it has advantages over the glass fibre.
Keywords: Bamboo fibres, natural fibres, mechanical extraction, glass fibres.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103371169 Model-Based Person Tracking Through Networked Cameras
Authors: Kyoung-Mi Lee, Youn-Mi Lee
Abstract:
This paper proposes a way to track persons by making use of multiple non-overlapping cameras. Tracking persons on multiple non-overlapping cameras enables data communication among cameras through the network connection between a camera and a computer, while at the same time transferring human feature data captured by a camera to another camera that is connected via the network. To track persons with a camera and send the tracking data to another camera, the proposed system uses a hierarchical human model that comprises a head, a torso, and legs. The feature data of the person being modeled are transferred to the server, after which the server sends the feature data of the human model to the cameras connected over the network. This enables a camera that captures a person's movement entering its vision to keep tracking the recognized person with the use of the feature data transferred from the server.
Keywords: Person tracking, human model, networked cameras, vision-based surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14901168 Riemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images
Authors: Mohamed Gouskir, Belaid Bouikhalene, Hicham Aissaoui, Benachir Elhadadi
Abstract:
In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in this paper, is the use of an edge-based anisotropic diffusion tensor for the segmentation task by integrating both image edge geometry and Riemannian manifold (geodesic, metric tensor) to regularize the convergence contour and extract complex anatomical structures. We check the accuracy of the segmentation results on simulated brain MRI scans of single T1-weighted, T2-weighted and Proton Density sequences. We validate our approach using two different databases: BrainWeb database, and MRI Multiple sclerosis Database (MRI MS DB). We have compared, qualitatively and quantitatively, our approach with the well-known brain extraction algorithms. We show that using a Riemannian manifolds to medical image analysis improves the efficient results to brain extraction, in real time, outperforming the results of the standard techniques.Keywords: Riemannian manifolds, Riemannian Tensor, Brain Segmentation, Non-Euclidean data, Brain Extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16651167 Feature Level Fusion of Multimodal Images Using Haar Lifting Wavelet Transform
Authors: Sudipta Majumdar, Jayant Bharadwaj
Abstract:
This paper presents feature level image fusion using Haar lifting wavelet transform. Feature fused is edge and boundary information, which is obtained using wavelet transform modulus maxima criteria. Simulation results show the superiority of the result as entropy, gradient, standard deviation are increased for fused image as compared to input images. The proposed methods have the advantages of simplicity of implementation, fast algorithm, perfect reconstruction, and reduced computational complexity. (Computational cost of Haar wavelet is very small as compared to other lifting wavelets.)
Keywords: Lifting wavelet transform, wavelet transform modulus maxima.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24271166 Multilevel Classifiers in Recognition of Handwritten Kannada Numerals
Authors: Dinesh Acharya U., N. V. Subba Reddy, Krishnamoorthi Makkithaya
Abstract:
The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average boundary length from the minimal bounding box are used in the recognition of numeral. The effect of each feature and their combination in the numeral classification is analyzed using nearest neighbor classifiers. It is common to combine multiple categories of features into a single feature vector for the classification. Instead, separate classifiers can be used to classify based on each visual feature individually and the final classification can be obtained based on the combination of separate base classification results. One popular approach is to combine the classifier results into a feature vector and leaving the decision to next level classifier. This method is extended to extract a better information, possibility distribution, from the base classifiers in resolving the conflicts among the classification results. Here, we use fuzzy k Nearest Neighbor (fuzzy k-NN) as base classifier for individual feature sets, the results of which together forms the feature vector for the final k Nearest Neighbor (k-NN) classifier. Testing is done, using different features, individually and in combination, on a database containing 1600 samples of different numerals and the results are compared with the results of different existing methods.Keywords: Fuzzy k Nearest Neighbor, Multiple Classifiers, Numeral Recognition, Structural features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17521165 Distribution of Phospholipids, Cholesterol and Carotenoids in Two-Solvent System during Egg Yolk Oil Solvent Extraction
Authors: Aleksandrs Kovalcuks, Mara Duma
Abstract:
Egg yolk oil is a concentrated source of egg bioactive compounds, such as fat-soluble vitamins, phospholipids, cholesterol, carotenoids and others. To extract lipids and other fat-soluble nutrients from liquid egg yolk, a two-step extraction process involving polar (ethanol) and non-polar (hexane) solvents were used. This extraction technique was based on egg yolk bioactive compounds polarities, where non-polar compound was extracted into non-polar hexane, but polar in to polar alcohol/water phase. But many egg yolk bioactive compounds are not strongly polar or non-polar. Egg yolk phospholipids, cholesterol and pigments are amphipatic (have both polar and non-polar regions) and their behavior in ethanol/hexane solvent system is not clear. The aim of this study was to clarify the behavior of phospholipids, cholesterol and carotenoids during extraction of egg yolk oil with ethanol and hexane and determine the loss of these compounds in egg yolk oil. Egg yolks and egg yolk oil were analyzed for phospholipids (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)), cholesterol and carotenoids (lutein, zeaxanthin, canthaxanthin and β-carotene) content using GC-FID and HPLC methods. PC and PE are polar lipids and were extracted into polar ethanol phase. Concentration of PC in ethanol was 97.89% and PE 99.81% from total egg yolk phospholipids. Due to cholesterol’s partial extraction into ethanol, cholesterol content in egg yolk oil was reduced in comparison to its total content presented in egg yolk lipids. The highest amount of lutein and zeaxanthin was concentrated in ethanol extract. The opposite situation was observed with canthaxanthin and β-carotene, which became the main pigments of egg yolk oil.
Keywords: Cholesterol, egg yolk oil, lutein, phospholipids, solvent extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18641164 Spectral Analysis of Speech: A New Technique
Authors: Neeta Awasthy, J.P.Saini, D.S.Chauhan
Abstract:
ICA which is generally used for blind source separation problem has been tested for feature extraction in Speech recognition system to replace the phoneme based approach of MFCC. Applying the Cepstral coefficients generated to ICA as preprocessing has developed a new signal processing approach. This gives much better results against MFCC and ICA separately, both for word and speaker recognition. The mixing matrix A is different before and after MFCC as expected. As Mel is a nonlinear scale. However, cepstrals generated from Linear Predictive Coefficient being independent prove to be the right candidate for ICA. Matlab is the tool used for all comparisons. The database used is samples of ISOLET.Keywords: Cepstral Coefficient, Distance measures, Independent Component Analysis, Linear Predictive Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19611163 An Improved Illumination Normalization based on Anisotropic Smoothing for Face Recognition
Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seongwon Cho
Abstract:
Robust face recognition under various illumination environments is very difficult and needs to be accomplished for successful commercialization. In this paper, we propose an improved illumination normalization method for face recognition. Illumination normalization algorithm based on anisotropic smoothing is well known to be effective among illumination normalization methods but deteriorates the intensity contrast of the original image, and incurs less sharp edges. The proposed method in this paper improves the previous anisotropic smoothing-based illumination normalization method so that it increases the intensity contrast and enhances the edges while diminishing the effect of illumination variations. Due to the result of these improvements, face images preprocessed by the proposed illumination normalization method becomes to have more distinctive feature vectors (Gabor feature vectors) for face recognition. Through experiments of face recognition based on Gabor feature vector similarity, the effectiveness of the proposed illumination normalization method is verified.Keywords: Illumination Normalization, Face Recognition, Anisotropic smoothing, Gabor feature vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15521162 Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology
Authors: Payman Davoodi-Nasab, Ahmad Rahbar-Kelishami, Jaber Safdari, Hossein Abolghasemi
Abstract:
The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium–iron–boron (Nd–Fe–B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%.Keywords: Emulsion liquid membrane, extraction of neodymium, multi-walled carbon nanotubes, response surface method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12581161 Adaptive Total Variation Based on Feature Scale
Authors: Jianbo Hu, Hongbao Wang
Abstract:
The widely used Total Variation de-noising algorithm can preserve sharp edge, while removing noise. However, since fixed regularization parameter over entire image, small details and textures are often lost in the process. In this paper, we propose a modified Total Variation algorithm to better preserve smaller-scaled features. This is done by allowing an adaptive regularization parameter to control the amount of de-noising in any region of image, according to relative information of local feature scale. Experimental results demonstrate the efficient of the proposed algorithm. Compared with standard Total Variation, our algorithm can better preserve smaller-scaled features and show better performance.
Keywords: Adaptive, de-noising, feature scale, regularizationparameter, Total Variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12401160 Automatic Extraction of Arbitrarily Shaped Buildings from VHR Satellite Imagery
Authors: Evans Belly, Imdad Rizvi, M. M. Kadam
Abstract:
Satellite imagery is one of the emerging technologies which are extensively utilized in various applications such as detection/extraction of man-made structures, monitoring of sensitive areas, creating graphic maps etc. The main approach here is the automated detection of buildings from very high resolution (VHR) optical satellite images. Initially, the shadow, the building and the non-building regions (roads, vegetation etc.) are investigated wherein building extraction is mainly focused. Once all the landscape is collected a trimming process is done so as to eliminate the landscapes that may occur due to non-building objects. Finally the label method is used to extract the building regions. The label method may be altered for efficient building extraction. The images used for the analysis are the ones which are extracted from the sensors having resolution less than 1 meter (VHR). This method provides an efficient way to produce good results. The additional overhead of mid processing is eliminated without compromising the quality of the output to ease the processing steps required and time consumed.Keywords: Building detection, shadow detection, landscape generation, label, partitioning, very high resolution satellite imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8421159 Caffeine Content Investigation in the Turkish Black Teas
Authors: E. Moroydor Derun, A. S. Kipcak, O. Dere Ozdemir, F. Demir, M. Karakoc, S. Piskin
Abstract:
Tea is a widely consumed beverage that contains many components. Caffeine belongs to this group of components called alkaloids contain nitrogen. In this study caffeine contents of three types of Turkish teas are determined by using extraction method. After condensation process, residue of caffeine and oil are obtained with evaporation. The oil which is in the residue is removed by hot water. Extraction process performed by using chloroform and the crude caffeine is obtained. From the results of experiments, caffeine contents are found in black tea, green tea and earl grey tea as 3.57±0.43%, 3.11±0.02%, 4.29±0.27%, respectively. Caffeine contents which are found in 1, 5 and 10 cups of tea are calculated. Furthermore, the daily intake of caffeine from black teas that affects human health is investigated.
Keywords: Caffeine, extraction, tea, health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85841158 Comparison of Microwave-Assisted and Conventional Leaching for Extraction of Copper from Chalcopyrite Concentrate
Authors: Ayfer Kilicarslan, Kubra Onol, Sercan Basit, Muhlis Nezihi Saridede
Abstract:
Chalcopyrite (CuFeS2) is the most common primary mineral used for the commercial production of copper. The low dissolution efficiency of chalcopyrite in sulfate media has prevented an efficient industrial leaching of this mineral in sulfate media. Ferric ions, bacteria, oxygen and other oxidants have been used as oxidizing agents in the leaching of chalcopyrite in sulfate and chloride media under atmospheric or pressure leaching conditions. Two leaching methods were studied to evaluate chalcopyrite (CuFeS2) dissolution in acid media. First, the conventional oxidative acid leaching method was carried out using sulfuric acid (H2SO4) and potassium dichromate (K2Cr2O7) as oxidant at atmospheric pressure. Second, microwave-assisted acid leaching was performed using the microwave accelerated reaction system (MARS) for same reaction media. Parameters affecting the copper extraction such as leaching time, leaching temperature, concentration of H2SO4 and concentration of K2Cr2O7 were investigated. The results of conventional acid leaching experiments were compared to the microwave leaching method. It was found that the copper extraction obtained under high temperature and high concentrations of oxidant with microwave leaching is higher than those obtained conventionally. 81% copper extraction was obtained by the conventional oxidative acid leaching method in 180 min, with the concentration of 0.3 mol/L K2Cr2O7 in 0.5M H2SO4 at 50 ºC, while 93.5% copper extraction was obtained in 60 min with microwave leaching method under same conditions.Keywords: Extraction, copper, microwave-assisted leaching, chalcopyrite, potassium dichromate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28491157 Volatility of Cu, Ni, Cr, Co, Pb, and As in Fluidised-Bed Combustion Chamber in Relation to Their Modes of Occurrence in Coal
Authors: L. Bartoňová, Z. Klika
Abstract:
Modes of occurrence of Pb, As, Cr, Co, Cu, and Ni in bituminous coal and lignite were determined by means of sequential extraction using NH4OAc, HCl, HF and HNO3 extraction solutions. Elemental affinities obtained were then evaluated in relation to volatility of these elements during the combustion of these coals in two circulating fluidised-bed power stations. It was found out that higher percentage of the elements bound in silicates brought about lower volatility, while higher elemental proportion with monosulphides association (or bound as exchangeable ion) resulted in higher volatility. The only exception was the behavior of arsenic, whose volatility depended on amount of limestone added during the combustion process (as desulphurisation additive) rather than to its association in coal.
Keywords: Coal combustion, sequential extraction, trace elements, volatility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793