Search results for: Boiler water wall tube
2784 A Study of Various Numerical Turbulence Modeling Methods in Boundary Layer Excitation of a Square Ribbed Channel
Authors: Hojjat Saberinejad, Adel Hashiehbaf, Ehsan Afrasiabian
Abstract:
Among the various cooling processes in industrial applications such as: electronic devices, heat exchangers, gas turbines, etc. Gas turbine blades cooling is the most challenging one. One of the most common practices is using ribbed wall because of the boundary layer excitation and therefore making the ultimate cooling. Vortex formation between rib and channel wall will result in a complicated behavior of flow regime. At the other hand, selecting the most efficient method for capturing the best results comparing to experimental works would be a fascinating issue. In this paper 4 common methods in turbulence modeling: standard k-e, rationalized k-e with enhanced wall boundary layer treatment, k-w and RSM (Reynolds stress model) are employed to a square ribbed channel to investigate the separation and thermal behavior of the flow in the channel. Finally all results from different methods which are used in this paper will be compared with experimental data available in literature to ensure the numerical method accuracy.Keywords: boundary layer, turbulence, numerical method, rib cooling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16902783 Experimental Investigation on the Effect of Ultrasonication on Dispersion and Mechanical Performance of Multi-Wall Carbon Nanotube-Cement Mortar Composites
Authors: S. Alrekabi, A. Cundy, A. Lampropoulos, I. Savina
Abstract:
Due to their remarkable mechanical properties, multi-wall carbon nanotubes (MWCNTs) are considered by many researchers to be a highly promising filler and reinforcement agent for enhanced performance cementitious materials. Currently, however, achieving an effective dispersion of MWCNTs remains a major challenge in developing high performance nano-cementitious composites, since carbon nanotubes tend to form large agglomerates and bundles as a consequence of Van der Waals forces. In this study, effective dispersion of low concentrations of MWCNTs at 0.01%, 0.025%, and 0.05% by weight of cement in the composite was achieved by applying different sonication conditions in combination with the use of polycarboxylate ether as a surfactant. UV-Visible spectroscopy and Transmission electron microscopy (TEM) were used to assess the dispersion of MWCNTs in water, while the dispersion states of MWCNTs within the cement composites and their surface interactions were examined by scanning electron microscopy (SEM). A high sonication intensity applied over a short time period significantly enhanced the dispersion of MWCNTs at initial mixing stages, and 0.025% of MWCNTs wt. of cement, caused 86% and 27% improvement in tensile strength and compressive strength respectively, compared with a plain cement mortar.Keywords: Dispersion, multiwall carbon nanotubes, mechanical performance, sonication conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18772782 ROSA/LSTF Separate Effect Test on Natural Circulation under High Core Power Condition of Pressurized Water Reactor
Authors: Takeshi Takeda
Abstract:
A separate effect test (SET) simulated natural circulation (NC) under high core power condition of a pressurized water reactor (PWR) utilizing the ROSA/LSTF (rig of safety assessment/large-scale test facility). The LSTF test results clarified the relationship between the primary loop mass inventory and the primary loop mass flow rate being dependent on the NC mode at a constant core power of 8% of the volumetric-scaled PWR nominal power. When the core power was 9% or more during reflux condensation, large-amplitude level oscillation in a form of slow fill and dump occurred in steam generator (SG) U-tubes. At 11% core power during reflux condensation, intermittent rise took place in the cladding surface temperature of simulated fuel rods. The RELAP5/MOD3.3 code indicated the insufficient prediction of the SG U-tube liquid level behavior during reflux condensation.Keywords: LSTF, natural circulation, core power, RELAP5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8562781 Entropy Generation Analysis of Free Convection Film Condensation on a Vertical Ellipsoid with Variable Wall Temperature
Authors: Sheng-An Yang, Ren-Yi Hung, Ying-Yi Ho
Abstract:
This paper aims to perform the second law analysis of thermodynamics on the laminar film condensation of pure saturated vapor flowing in the direction of gravity on an ellipsoid with variable wall temperature. The analysis provides us understanding how the geometric parameter- ellipticity and non-isothermal wall temperature variation amplitude “A." affect entropy generation during film-wise condensation heat transfer process. To understand of which irreversibility involved in this condensation process, we derived an expression for the entropy generation number in terms of ellipticity and A. The result indicates that entropy generation increases with ellipticity. Furthermore, the irreversibility due to finite temperature difference heat transfer dominates over that due to condensate film flow friction and the local entropy generation rate decreases with increasing A in the upper half of ellipsoid. Meanwhile, the local entropy generation rate enhances with A around the rear lower half of ellipsoid.Keywords: Free convection; Non-isothermal; Thermodynamic second law; Entropy, Ellipsoid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19592780 Evaluation of Water Quality for the Kurtbogazi Dam Outlet and the Streams Feeding the Dam in Ankara, Turkey
Authors: G. Tozsin, F. Bakir, C. Acar, E. Koç
Abstract:
Kurtbogazi Dam has gained special meaning for Ankara, Turkey for the last decade due to the rapid depletion of nearby resources of drinking water. In this study, the results of the analyses of Kurtbogazi Dam outlet water and the rivers flowing into the Kurtbogazi Dam were discussed for the period of last five years between 2008 and 2012. Some physical and chemical properties (pH, temperature, biochemical oxygen demand (BOD5), nitrate, phosphate and chlorine) of these water resources were evaluated. They were classified according to the Council Directive (75/440/EEC). Moreover, the properties of these surface waters were assessed to determine the quality of water for drinking and irrigation purposes using Piper, US Salinity Laboratory and Wilcox diagrams. The results showed that all the water resources are acceptable level as surface water except for Pazar Stream in terms of ortho-phosphate and BOD5 concentration for 2008.Keywords: Kurtbogazi dam, water quality assessment, Ankara water, water supply.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19032779 Sizing the Protection Devices to Control Water Hammer Damage
Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar
Abstract:
The primary objectives of transient analysis are to determine the values of transient pressures that can result from flow control operations and to establish the design criteria for system equipment and devices (such as control devices and pipe wall thickness) so as to provide an acceptable level of protection against system failure due to pipe collapse or bursting. Because of the complexity of the equations needed to describe transients, numerical computer models are used to analyze transient flow hydraulics. An effective numerical model allows the hydraulic engineer to analyze potential transient events and to identify and evaluate alternative solutions for controlling hydraulic transients, thereby protecting the integrity of the hydraulic system. This paper presents the influence of using the protection devices to control the adverse effects due to excessive and low pressure occurs in the transient.
Keywords: Flow Transient, Water hammer, Pipeline System, Surge Tank, Simulation Model, Protection Devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94952778 Second-Order Slip Flow and Heat Transfer in a Long Isoflux Microchannel
Authors: Huei Chu Weng
Abstract:
This paper presents a study on the effect of second-order slip on forced convection through a long isoflux heated or cooled planar microchannel. The fully developed solutions of flow and thermal fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and local heat flux boundary conditions. Results reveal that when the average flow velocity increases or the wall heat flux amount decreases, the role of thermal creep becomes more insignificant, while the effect of second-order slip becomes larger. The second-order term in the Deissler slip boundary condition is found to contribute a positive velocity slip and then to lead to a lower pressure drop as well as a lower temperature rise for the heated-wall case or to a higher temperature rise for the cooled-wall case. These findings are contrary to predictions made by the Karniadakis slip model.
Keywords: Microfluidics, forced convection, thermal creep, second-order boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23582777 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser
Authors: Guanqiao Wang, Hongyang Yu
Abstract:
There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. Therefore, robots appear more and more frequently in the construction industry. Navigation and positioning is a very important task for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radio frequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered or the error of plastering the wall is large. A positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.
Keywords: Indoor plastering robot, navigation, precise positioning, line laser, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5442776 Estimation of the Park-Ang Damage Index for Floating Column Building with Infill Wall
Authors: Susanta Banerjee, Sanjaya Kumar Patro
Abstract:
Buildings with floating column are highly undesirable built in seismically active areas. Many urban multi-storey buildings today have floating column buildings which are adopted to accommodate parking at ground floor or reception lobbies in the first storey. The earthquake forces developed at different floor levels in a building need to be brought down along the height to the ground by the shortest path; any deviation or discontinuity in this load transfer path results in poor performance of the building. Floating column buildings are severely damaged during earthquake. Damage on this structure can be reduce by taking the effect of infill wall. This paper presents the effect of stiffness of infill wall to the damage occurred in floating column building when ground shakes. Modelling and analysis are carried out by non linear analysis programme IDARC-2D. Damage occurred in beams, columns, storey are studied by formulating modified Park & Ang model to evaluate damage indices. Overall structural damage indices in buildings due to shaking of ground are also obtained. Dynamic response parameters i.e. lateral floor displacement, storey drift, time period, base shear of buildings are obtained and results are compared with the ordinary moment resisting frame buildings. Formation of cracks, yield, plastic hinge, are also observed during analysis.
Keywords: Floating column, Infill Wall, Park-Ang Damage Index, Damage State.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31182775 Performance Analysis of Ferrocement Retrofitted Masonry Wall Units under Cyclic Loading
Authors: Raquib Ahsan, Md. Mahir Asif, Md. Zahidul Alam
Abstract:
A huge portion of old masonry buildings in Bangladesh are vulnerable to earthquake. In most of the cases these buildings contain unreinforced masonry wall which are most likely to be subjected to earthquake damages. Due to deterioration of mortar joint and aging, shear resistance of these unreinforced masonry walls dwindle. So, retrofitting of these old buildings has become an important issue. Among many researched and experimented techniques, ferrocement retrofitting can be a low cost technique in context of the economic condition of Bangladesh. This study aims at investigating the behavior of ferrocement retrofitted unconfined URM walls under different types of cyclic loading. Four 725 mm × 725 mm masonry wall units were prepared with bricks jointed by stretcher bond with 12.5 mm mortar between two adjacent layers of bricks. To compare the effectiveness of ferrocement retrofitting a particular type wire mesh was used in this experiment which is 20 gauge woven wire mesh with 12.5 mm × 12.5 mm square opening. After retrofitting with ferrocement these wall units were tested by applying cyclic deformation along the diagonals of the specimens. Then a comparative study was performed between the retrofitted specimens and control specimens for both partially reversed cyclic load condition and cyclic compression load condition. The experiment results show that ultimate load carrying capacities of ferrocement retrofitted specimens are 35% and 27% greater than the control specimen under partially reversed cyclic loading and cyclic compression respectively. And before failure the deformations of ferrocement retrofitted specimens are 43% and 33% greater than the control specimen under reversed cyclic loading and cyclic compression respectively. Therefore, the test results show that the ultimate load carrying capacity and ductility of ferrocement retrofitted specimens have improved.
Keywords: Cyclic compression, ferrocement, masonry wall, partially reversed cyclic load, retrofitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9242774 Seismic Assessment of Old Existing RC Buildings with Masonry Infill in Madinah as per ASCE
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
An existing RC building in Madinah is seismically evaluated with and without infill wall. Four model systems have been considered i.e. model I (no infill), model IIA (strut infill-update from field test), model IIB (strut infill- ASCE/SEI 41) and model IIC (strut infill-Soft storey- ASCE/SEI 41). Three dimensional pushover analyses have been carried out using SAP2000 software incorporating inelastic material behavior for concrete, steel and infill walls. Infill wall has been modeled as equivalent strut according to suggested equation matching field test measurements and to the ASCE/SEI 41 equation. The effect of building modeling on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madinah area has been investigated. The response modification factor (R) for the 5 story RC building is evaluated from capacity and demand spectra (ATC-40) for the studied models. The results are summarized and discussed.
Keywords: Infill wall, Pushover Analysis, Response Modification Factor, Seismic Assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32642773 Surface Water Quality in Orchard Area, Amphawa District, Samut Songkram Province, Thailand
Authors: Sisuwan Kaseamsawat, Sivapan Choo-In
Abstract:
This study aimed to evaluated the surface water quality for agriculture and consumption in the Amphawa District. The surface water quality parameters in this study included water temperature, turbidity, conductivity, salinity, pH, dissolved oxygen, BOD, nitrate, suspended solids, phosphorus, total dissolved solids (TDS), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), lead (Pb) and cadmium (Cd). The water samples were collected from small excavation, Lychee, Pomelo and Coconut orchards for 3 seasons from January to December 2011.
The surface water quality from small excavation, Lychee, pomelo and coconut orchards were met the type III of surface water quality standard. The concentration of heavy metal and did not differ significantly at 0.05 level, except dissolved oxygen.
The surface water was suitable for consumption by the usual sterile and generally improving water quality through the process before and was suitable for agriculture.
Keywords: Water Quality, Surface Water Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20582772 Performance of an Absorption Refrigerator Using a Solar Thermal Collector
Authors: Abir Hmida, Nihel Chekir, Ammar Ben Brahim
Abstract:
In the present paper, we investigate the feasibility of a thermal solar driven cold room in Gabes, southern region of Tunisia. The cold room of 109 m3 is refrigerated using an ammonia absorption machine. It is destined to preserve dates during the hot months of the year. A detailed study of the cold room leads previously to the estimation of the cooling load of the proposed storage room in the operating conditions of the region. The next step consists of the estimation of the required heat in the generator of the absorption machine to ensure the desired cold temperature. A thermodynamic analysis was accomplished and complete description of the system is determined. We propose, here, to provide the needed heat thermally from the sun by using vacuum tube collectors. We found that at least 21m² of solar collectors are necessary to accomplish the work of the solar cold room.
Keywords: Absorption, ammonia, cold room, solar collector, vacuum tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7352771 Modeling of Blood Flow Velocity into the Main Artery via Left Ventricle of Heart during Steady Condition
Authors: Mohd Azrul Hisham Mohd Adib, Nur Hazreen Mohd Hasni
Abstract:
A three-dimensional and pulsatile blood flow in the left ventricle of heart model has been studied numerically. The geometry was derived from a simple approximation of the left ventricle model and the numerical simulations were obtained using a formulation of the Navier-Stokes equations. In this study, simulation was used to investigate the pattern of flow velocity in 3D model of heart with consider the left ventricle based on critical parameter of blood under steady condition. Our results demonstrate that flow velocity focused from mitral valve channel and continuous linearly to left ventricle wall but this skewness progresses into outside wall in atrium through aortic valve with random distribution that is irregular due to force subtract from ventricle wall during cardiac cycle. The findings are the prediction of the behavior of the blood flow velocity pattern in steady flow condition which can assist the medical practitioners in their decision on the patients- treatments.
Keywords: Mitral Valve, Aortic Valve, Cardiac Cycle, Leaflet, Biomechanics, Left Ventricle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21402770 Evaluation of Water Quality of the Surface Water of the Damietta Nile Branch, Damietta Governorate, Egypt
Authors: M. S. M. El-Bady
Abstract:
Water quality and heavy metals pollution of the Damietta Nile Branch at Damietta governorate were investigated in the current work. Fourteen different sampling points were selected along the Damietta Nile branch from Ras EL-Bar (sample 1) to Sheremsah (sample 14). Physical and chemical parameters and the concentrations of Cd, Cr, Cu, Ni, Fe, Al, Hg, Pb and Zn were investigated for water quality assessment of Damietta Nile Branch at Damietta Governorate. Most of the samples show that the water is suitable for drinking and irrigation purposes. All locations of samples near the sea are unsuitable water but the samples in the south direction away from the sea are suitable or good water for drinking and irrigation.
Keywords: Water quality indices, Damietta Governorate, Nile River, pollution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8602769 Assessing the Global Water Productivity of Some Irrigation Command Areas in Iran
Authors: A. Montazar
Abstract:
The great challenge of the agricultural sector is to produce more crop from less water, which can be achieved by increasing crop water productivity. The modernization of the irrigation systems offers a number of possibilities to expand the economic productivity of water and improve the virtual water status. The objective of the present study is to assess the global water productivity (GWP) within the major irrigation command areas of I.R. Iran. For this purpose, fourteen irrigation command areas where located in different areas of Iran were selected. In order to calculate the global water productivity of irrigation command areas, all data on the delivered water to cropping pattern, cultivated area, crops water requirement, and yield production rate during 2002-2006 were gathered. In each of the command areas it seems that the cultivated crops have a higher amount of virtual water and thus can be replaced by crops with less virtual water. This is merely suggested due to crop water consumption and at the time of replacing crops, economic value as well as cultural and political factors must be considered. The results indicated that the lowest GWP belongs to Mahyar and Borkhar irrigation areas, 0.24 kg m-3, and the highest is that of the Dez irrigation area, 0.81 kg m-3. The findings demonstrated that water management in the two irrigation areas is just efficient. The difference in the GWP of irrigation areas is due to variations in the cropping pattern, amount of crop productions, in addition to the effective factors in the water use efficiency in the irrigation areas.Keywords: Iran, Irrigation command area, Water productivity, Virtual water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16782768 Effect of Eccentricity on Conjugate Natural Convection in Vertical Eccentric Annuli
Authors: A. Jamal, M. A. I. El-Shaarawi, E. M. A. Mokheimer
Abstract:
Combined conduction-free convection heat transfer in vertical eccentric annuli is numerically investigated using a finitedifference technique. Numerical results, representing the heat transfer parameters such as annulus walls temperature, heat flux, and heat absorbed in the developing region of the annulus, are presented for a Newtonian fluid of Prandtl number 0.7, fluid-annulus radius ratio 0.5, solid-fluid thermal conductivity ratio 10, inner and outer wall dimensionless thicknesses 0.1 and 0.2, respectively, and dimensionless eccentricities 0.1, 0.3, 0.5, and 0.7. The annulus walls are subjected to thermal boundary conditions, which are obtained by heating one wall isothermally whereas keeping the other wall at inlet fluid temperature. In the present paper, the annulus heights required to achieve thermal full development for prescribed eccentricities are obtained. Furthermore, the variation in the height of thermal full development as function of the geometrical parameter, i.e., eccentricity is also investigated.Keywords: Conjugate natural convection, eccentricity, heat transfer, vertical eccentric annuli.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22222767 One Typical Jacket Platform’s Reactions in Front of Sea Water Level Variations
Authors: M. A. Lotfollahi Yaghin, R. Rezaei
Abstract:
Demanding structural safety under various loading conditions, has focused attention on their variation and structural elements behavior due to these variations. Jacket structures are designed for a specific water level (LAT). One of the important issues about these kinds of structures is the water level rise. For example, the level of water in the Caspian Sea has risen by 2.5m in the last fifteen years and is continuing to rise. In this paper, the structural behavior of one typical shallow or medium water jacket platform (a four-leg steel jacket platform in 55m water depth) under water level rise has been studied. The time history of Von Mises stress and nodal displacement has chosen for evaluating structural behavior. The results show that dependent on previous water depth and structural elements position; different structural elements have different behavior due to water level rise.
Keywords: Jacket offshore platform, Time- history, Von Mises, Water level rise, Utilization Ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24192766 Mixed Convection in a 2D-channel with a Co- Flowing Fluid Injection: Influence of the Jet Position
Authors: Ameni Mokni, Hatem Mhiri, Georges Le Palec, Philippe Bournot
Abstract:
Numerical study of a plane jet occurring in a vertical heated channel is carried out. The aim is to explore the influence of the forced flow, issued from a flat nozzle located in the entry section of a channel, on the up-going fluid along the channel walls. The Reynolds number based on the nozzle width and the jet velocity ranges between 3 103 and 2.104; whereas, the Grashof number based on the channel length and the wall temperature difference is 2.57 1010. Computations are established for a symmetrically heated channel and various nozzle positions. The system of governing equations is solved with a finite volumes method. The obtained results show that the jet-wall interactions activate the heat transfer, the position variation modifies the heat transfer especially for low Reynolds numbers: the heat transfer is enhanced for the adjacent wall; however it is decreased for the opposite one. The numerical velocity and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and the Nusselt number along the plates.Keywords: Channel, Heat flux, Jet, Mixed convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17562765 Conversion of Mechanical Water Pump to Electric Water Pump for a CI Engine
Authors: K. Arunachalam, P. Mannar Jawahar
Abstract:
Presently, engine cooling pump is driven by toothed belt. Therefore, the pump speed is dependent on engine speed which varies their output. At normal engine operating conditions (Higher RPM and low load, Higher RPM and high load), mechanical water pumps in existing engines are inevitably oversized and so the use of an electric water pump together with state-of-the-art thermal management of the combustion engine has measurable advantages. Demand-driven cooling, particularly in the cold-start phase, saves fuel (approx 3 percent) and leads to a corresponding reduction in emissions. The lack of dependence on a mechanical drive also results in considerable flexibility in component packaging within the engine compartment. This paper describes the testing and comparison of existing mechanical water pump with that of the electric water pump. When the existing mechanical water pump is replaced with the new electric water pump the percentage gain in system efficiency is also discussed.
Keywords: Cooling system, Electric water pump, Mechanical water pump.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56212764 Temperature Effect on Sound Propagation in an Elastic Pipe with Viscoelastic Liquid
Authors: S. Levitsky, R. Bergman
Abstract:
Fluid rheology may have essential impact on sound propagation in a liquid-filled pipe, especially, in a low frequency range. Rheological parameters of liquid are temperature-sensitive, which ultimately results in a temperature dependence of the wave speed and attenuation in the waveguide. The study is devoted to modeling of this effect at sound propagation in an elastic pipe with polymeric liquid, described by generalized Maxwell model with non-zero high-frequency viscosity. It is assumed that relaxation spectrum is distributed according to the Spriggs law; temperature impact on the liquid rheology is described on the basis of the temperature-superposition principle and activation theory. The dispersion equation for the waveguide, considered as a thin-walled tube with polymeric solution, is obtained within a quasi-one-dimensional formulation. Results of the study illustrate the influence of temperature on sound propagation in the system.
Keywords: Elastic tube, sound propagation, temperature effect, viscoelastic liquid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19772763 An Analysis of Collapse Mechanism of Thin- Walled Circular Tubes Subjected to Bending
Authors: Somya Poonaya, Chawalit Thinvongpituk, Umphisak Teeboonma
Abstract:
Circular tubes have been widely used as structural members in engineering application. Therefore, its collapse behavior has been studied for many decades, focusing on its energy absorption characteristics. In order to predict the collapse behavior of members, one could rely on the use of finite element codes or experiments. These tools are helpful and high accuracy but costly and require extensive running time. Therefore, an approximating model of tubes collapse mechanism is an alternative for early step of design. This paper is also aimed to develop a closed-form solution of thin-walled circular tube subjected to bending. It has extended the Elchalakani et al.-s model (Int. J. Mech. Sci.2002; 44:1117-1143) to include the rate of energy dissipation of rolling hinge in the circumferential direction. The 3-D geometrical collapse mechanism was analyzed by adding the oblique hinge lines along the longitudinal tube within the length of plastically deforming zone. The model was based on the principal of energy rate conservation. Therefore, the rates of internal energy dissipation were calculated for each hinge lines which are defined in term of velocity field. Inextensional deformation and perfect plastic material behavior was assumed in the derivation of deformation energy rate. The analytical result was compared with experimental result. The experiment was conducted with a number of tubes having various D/t ratios. Good agreement between analytical and experiment was achieved.Keywords: Bending, Circular tube, Energy, Mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35182762 Affordability and Expenditure Patterns towards Sustainable Consumption in Malaysia
Authors: Affordability, Expenditure Patterns towards Sustainable Consumption in Malaysia
Abstract:
Safe drinking water is needed for survival. Households have to pay the water bill monthly. However, lower income households are sometimes unable to afford the cost. This study examines water access and affordability among households in Malaysia and the determinants of water affordability using cross-sectional data and multiple regression. The paper expects that the bill for basic water consumption is inversely related to average income. This means that policy makers need to redesign the water tariff to improve the quality of life of lower income households.
Keywords: Affordability, households, income, water tariff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10772761 A Water Reuse System in Wetland Paddy Supports the Growing Industrial Water Needs
Authors: Yu-Chuan Chang, Chen Shi-Kai
Abstract:
A water reuse system in wetland paddy was simulated to supply water for industrial in this paper. A two-tank model was employed to represent the return flow of the wetland paddy.Historical data were performed for parameter estimation and model verification. With parameters estimated from the data, the model was then used to simulate a reasonable return flow rate from the wetland paddy. The simulation results show that the return flow ratio was 11.56% in the first crop season and 35.66% in the second crop season individually; the difference may result from the heavy rainfall in the second crop season. Under the existent pond with surplus active capacity, the water reuse ratio was 17.14%, and the water supplementary ratio was 21.56%. However, the pattern of rainfall, the active capacity of the pond, and the rate of water treatment limit the volume of reuse water. Increasing the irrigation water, dredging the depth of pond before rainy season and enlarging the scale of module are help to develop water reuse system to support for the industrial water use around wetland paddy.Keywords: Return flow, water reuse, wetland paddy, return flow ratio (RR), water reuse ratio (WRR), water supplementary ratio(WSR)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13112760 Free Convective Heat Transfer in an Enclosure Filled with Porous Media with and without Insulated Moving Wall
Authors: Laith Jaafer Habeeb
Abstract:
The present work is concerned with the free convective two dimensional flow and heat transfer, in isotropic fluid filled porous rectangular enclosure with differentially heated walls for steady state incompressible flow have been investigated for non- Darcy flow model. Effects of Darcy number (0.0001 £Da£ 10), Rayleigh number (10 £Ra£ 5000), and aspect ratio (0.25 £AR£ 4), for a range of porosity (0.4 £e£ 0.9) with and without moving lower wall have been studied. The cavity was insulated at the lower and upper surfaces. The right and left heated surfaces allows convective transport through the porous medium, generating a thermal stratification and flow circulations. It was found that the Darcy number, Rayleigh number, aspect ratio, and porosity considerably influenced characteristics of flow and heat transfer mechanisms. The results obtained are discussed in terms of the Nusselt number, vectors, contours, and isotherms.Keywords: Numerical study, moving-wall cavity flow, saturated porous medium, different Darcy and Rayleigh numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20662759 Removal of Deposits and Improvement of Shelf Life in CO2-Rich Mineral Water by Ozone-Microbubbles
Authors: Un Hwa Choe, Jong Hyon Choe, Yong Jun Kim
Abstract:
The aim of this study was to effectively remove Fe2+ by using ozone microbubbles in bottled mineral water to prevent sediment from occurring during storage and increase shelf life. By considering the characteristics of mineral water with low solubility of ozone and high CO2 content, a suitable ozone injection step was chosen and a mineral water treatment method using microbubbles was proposed. As a result of the treatment of the bottled mineral water with ozone microbubbles, the iron ion concentration was reduced from 0.14 mg/L to 0.01 mg/L, and the shelf life increased to 360 days. During the treatment, the concentrations of K+ and Na+ were almost unchanged, and the deposition time was reduced to one-third compared to the natural oxidation.
Keywords: CO2–rich mineral water, ozone-micro bubble, shelf life, bottled mineral water, water treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 332758 Turbulence Modeling of Source and Sink Flows
Authors: Israt Jahan Eshita
Abstract:
Flows developed between two parallel disks have many engineering applications. Two types of non-swirling flows can be generated in such a domain. One is purely source flow in disc type domain (outward flow). Other is purely sink flow in disc type domain (inward flow). This situation often appears in some turbo machinery components such as air bearings, heat exchanger, radial diffuser, vortex gyroscope, disc valves, and viscosity meters. The main goal of this paper is to show the mesh convergence, because mesh convergence saves time, and economical to run and increase the efficiency of modeling for both sink and source flow. Then flow field is resolved using a very fine mesh near-wall, using enhanced wall treatment. After that we are going to compare this flow using standard k-epsilon, RNG k-epsilon turbulence models. Lastly compare some experimental data with numerical solution for sink flow. The good agreement of numerical solution with the experimental works validates the current modeling.
Keywords: Hydraulic diameter, k-epsilon model, meshes convergence, Reynolds number, RNG model, sink flow, source flow and wall y+.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25352757 New Highly-Scalable Carbon Nanotube-Reinforced Glasses and Ceramics
Authors: Konstantinos G. Dassios, Guillaume Bonnefont, Gilbert Fantozzi, Theodore E. Matikas, Costas Galiotis
Abstract:
We report herein the development and preliminary mechanical characterization of fully-dense multi-wall carbon nanotube (MWCNT)-reinforced ceramics and glasses based on a completely new methodology termed High Shear Compaction (HSC). The tubes are introduced and bound to the matrix grains by aid of polymeric binders to form flexible green bodies which are sintered and densified by spark plasma sintering to unprecedentedly high densities of 100% of the pure-matrix value. The strategy was validated across a PyrexTM glass / MWCNT composite while no identifiable factors limit application to other types of matrices. Nondestructive evaluation, based on ultrasonics, of the dynamic mechanical properties of the materials including elastic, shear and bulk modulus as well as Poisson’s ratio showed optimum property improvement at 0.5 %wt tube loading while evidence of nanoscalespecific energy dissipative characteristics acting complementary to nanotube bridging and pull-out indicate a high potential in a wide range of reinforcing and multifunctional applications.
Keywords: Carbon nanotubes, ceramic matrix composites, toughening, ultrasonics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17402756 Ways to Define the Most Sustainable Actions for Water Shortage Prevention in Mega Cities, Especially in Developing Countries
Authors: Keivan Karimlou, Nemat Hassani, Abdollah Rashidi Mehrabadi
Abstract:
Climate change, industrial bloom, population growth and mismanagement are the most important factors that lead to water shortages around the world. Water shortages often lead to forced immigration, war, and thirst and hunger, especially in developing countries. One of the simplest solutions to solve the water shortage issues around the world is transferring water from one watershed to another; however it may not be a suitable solution. Water managers around the world use supply and demand management methods to decrease the incidence of water shortage in a sustainable manner. But as a matter of economic constraints, they must define a method to select the best possible action to reduce and limit water shortages. The following paper recognizes different kinds of criteria to select the best possible policy for reducing water shortage in mega cities by examining a comprehensive literature review.
Keywords: Criteria, management, shortage, sustainable, water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11222755 Finite Element Analysis of Thin Steel Plate Shear Walls
Authors: M. Lashgari
Abstract:
Steel plate shear walls (SPSWs) in buildings are known to be an effective means for resisting lateral forces. By using un-stiffened walls and allowing them to buckle, their energy absorption capacity will increase significantly due to the postbuckling capacity. The post-buckling tension field action of SPSWs can provide substantial strength, stiffness and ductility. This paper presents the Finite Element Analysis of low yield point (LYP) steel shear walls. In this shear wall system, the LYP steel plate is used for the steel panel and conventional structural steel is used for boundary frames. A series of nonlinear cyclic analyses were carried out to obtain the stiffness, strength, deformation capacity, and energy dissipation capacity of the LYP steel shear wall. The effect of widthto- thickness ratio of steel plate on buckling behavior, and energy dissipation capacities were studied. Good energy dissipation and deformation capacities were obtained for all models.Keywords: low yield point steel, steel plate shear wall, thin plates, elastic buckling, inelastic buckling, post-buckling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3198