Search results for: Launch vehicle modeling
2632 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications
Authors: Assem M. F. Sallam, Ah. El-S. Makled
Abstract:
This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.
Keywords: Launch vehicle modeling, launch vehicle trajectory, mathematical modeling, MATLAB-Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33002631 Development of a Thrust Measurement System
Authors: S. Jeon, J. Kim, H. Choi
Abstract:
KSLV-I(Korea Space Launch Vehicle-I) is designed as a launch vehicle to enter a 100 kg-class satellite to the LEO(Low Earth Orbit). Attitude angles of the upper-stage, including roll, pitch and yaw are controlled by the cold gas thruster system using nitrogen gas. The cold gas thruster is an actuator in the RCS(Reaction Control System). To design an attitude controller for the upper-stage, thrust measurement in vacuum condition is required. In this paper, the new thrust measurement system and calibration mechanism are developed and measurement errors and signal processing method are presented.Keywords: cold gas thruster, launch vehicle, thrust measurement, calibration mechanism, signal processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27612630 An Accurate Prediction of Surface Temperature History in a Supersonic Flight
Authors: A. M. Tahsini, S. A. Hosseini
Abstract:
In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux and the one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.
Keywords: Aerodynamic heating, Heat conduction, Numerical simulation, Supersonic flight, Launch vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17092629 Nonlinear Dynamic Modeling and Active Vibration Control of a System with Fuel Sloshing
Authors: A. A. Jafari, A. M. Khoshnood, J. Roshanian
Abstract:
Attitude control of aerospace system with liquid containers may face to a problem associate with fuel sloshing. The sloshing phenomena can degrade the stability of control system and in the worst case, interaction between the attitude control system and fuel vibration leading to resonance. In this paper, a full process of nonlinear dynamic modeling of an aerospace launch vehicle with fuel sloshing is given. Then, a new control system based on model reference adaptive filter is proposed and its algorithm is extracted. This controller implemented on the main attitude control system. Finally, numerical simulation of nonlinear model and control system is carried out to examine the performance of the new controller. Results of simulations show that the inconvenient effects of the fuel sloshing by augmenting this control system are reduced and attitude control system performs, satisfactorily.
Keywords: nonlinear dynamic modeling, fuel sloshing, vibration control, model reference, adaptive filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22982628 Non-Destructive Evaluation of Launch Tube Welds with Radiography
Authors: Tosapolporn Pornpibunsompop
Abstract:
The non-destructive testing of launch tube weld with radiography was investigated and evaluated with AWS D1.1 standard. The paper started with preparation of launch tube and radiographic inspection. X-Ray inspection then was done and gotten the result. The judgment of inspection results were concluded by certified person and finally, the evaluation with AWS D1.1 standard was conducted as well. The result shown that weld position P1 was not conformed to AWS D1.1 which allowed size of incomplete penetration did not exceed 4 mm. The other welds were corresponded to as mentioned standard. Additionally, the corrective actions for incomplete penetration either provided for future actions.Keywords: Non-destructive evaluation, Weld, Launch tube, Radiography
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16582627 Investigation of the Effect of Cavitator Angle and Dimensions for a Supercavitating Vehicle
Authors: Sri Raman A., A.K.Ghosh
Abstract:
At very high speeds, bubbles form in the underwater vehicles because of sharp trailing edges or of places where the local pressure is lower than the vapor pressure. These bubbles are called cavities and the size of the cavities grows as the velocity increases. A properly designed cavitator can induce the formation of a single big cavity all over the vehicle. Such a vehicle travelling in the vaporous cavity is called a supercavitating vehicle and the present research work mainly focuses on the dynamic modeling of such vehicles. Cavitation of the fins is also accounted and the effect of the same on trajectory is well explained. The entire dynamics has been developed using the state space approach and emphasis is given on the effect of size and angle of attack of the cavitator. Control law has been established for the motion of the vehicle using Non-linear Dynamic Inverse (NDI) with cavitator as the control surface.
Keywords: High speed underwater vehicle, Non-Linear Dynamic Inverse (NDI), six-dof modeling, Supercavitation, Torpedo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715862626 Integrate Communication Modeling into the Design Modeling at Early Stages of the Design Flow Case Study: Unmanned Aerial Vehicle (UAV)
Authors: Ibrahim A. Aref, Tarek A. El-Mihoub
Abstract:
This paper shows how we can integrate communication modeling into the design modeling at early stages of the design flow. We consider effect of incorporating noise such as impulsive noise on system stability. We show that with change of the system model and investigate the system performance under the different communication effects. We modeled a unmanned aerial vehicle (UAV) as a demonstration using SystemC methodology. Moreover the system is modeled by joining the capabilities of UML and SystemC to operate at system level.Keywords: Modelling, SoC, SystemC, UAV, Simulation, SoC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22622625 Modeling and Simulation of Standalone Photovoltaic Charging Stations for Electric Vehicles
Authors: R. Mkahl, A. Nait-Sidi-Moh, M. Wack
Abstract:
Batteries of electric vehicles (BEV) are becoming more attractive with the advancement of new battery technologies and promotion of electric vehicles. BEV batteries are recharged on board vehicles using either the grid (G2V for Grid to Vehicle) or renewable energies in a stand-alone application (H2V for Home to Vehicle). This paper deals with the modeling, sizing and control of a photovoltaic stand-alone application that can charge the BEV at home. The modeling approach and developed mathematical models describing the system components are detailed. Simulation and experimental results are presented and commented.
Keywords: Electric vehicles, photovoltaic energy, lead-acid batteries, charging process, modeling, simulation, experimental tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41992624 Autonomous Underwater Vehicle (AUV) Dynamics Modeling and Performance Evaluation
Authors: K. M. Tan, A. Anvar, T.F. Lu
Abstract:
A sophisticated simulator provides a cost-effective measure to carry out preliminary mission testing and diagnostic while reducing potential failures for real life at sea trials. The presented simulation framework covers three key areas: AUV modeling, sensor modeling, and environment modeling. AUV modeling mainly covers the area of AUV dynamics. Sensor modeling deals with physics and mathematical models that govern each sensor installed onto the AUV. Environment model incorporates the hydrostatic, hydrodynamics, and ocean currents that will affect the AUV in a real-time mission. Based on this designed simulation framework, custom scenarios provided by the user can be modeled and its corresponding behaviors can be observed. This paper focuses on the accuracy of the simulated data from AUV model and environmental model derived from a developed AUV test-bed which was jointly upgraded by DSTO and the University of Adelaide. The main contribution of this paper is to experimentally verify the accuracy of the proposed simulation framework.
Keywords: Autonomous Underwater Vehicle (AUV), simulator, framework, robotics, maritime robot, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47322623 Analyzing of Noise inside a Simple Vehicle Cabin using Boundary Element Method
Authors: A. Soltani, M. Karimi Demneh
Abstract:
In this paper, modeling of an acoustic enclosed vehicle cabin has been carried out by using boundary element method. Also, the second purpose of this study is analyzing of linear wave equation in an acoustic field. The resultants of this modeling consist of natural frequencies that have been compared with resultants derived from finite element method. By using numerical method (boundary element method) and after solution of wave equation inside an acoustic enclosed cabin, this method has been progressed to simulate noise inside a simple vehicle cabin.Keywords: Boundary element method, natural frequency, noise, vehicle cabin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25462622 Dynamic Modeling of Intelligent Air-Cushion Tracked Vehicle for Swamp Peat
Authors: Altab Hossain, Ataur Rahman, A. K. M. Mohiuddin, Yulfian Aminanda
Abstract:
Modeling of the dynamic behavior and motion are renewed interest in the improved tractive performance of an intelligent air-cushion tracked vehicle (IACTV). This paper presents a new dynamical model for the forces on the developed small scale intelligent air-cushion tracked vehicle moving over swamp peat. The air cushion system partially supports the 25 % of vehicle total weight in order to make the vehicle ground contact pressure 7 kN/m2. As the air-cushion support system can adjust automatically on the terrain, so the vehicle can move over the terrain without any risks. The springdamper system is used with the vehicle body to control the aircushion support system on any undulating terrain by making the system sinusoidal form. Experiments have been carried out to investigate the relationships among tractive efficiency, slippage, traction coefficient, load distribution ratio, tractive effort, motion resistance and power consumption in given terrain conditions. Experiment and simulation results show that air-cushion system improves the vehicle performance by keeping traction coefficient of 71% and tractive efficiency of 62% and the developed model can meet the demand of transport efficiency with the optimal power consumption.Keywords: Air-cushion system, ground contact pressure, slippage, power consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19612621 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink
Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu
Abstract:
Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.
Keywords: Skid-steering, Trucksim-Simulink, feedforward control, dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9482620 A Modularized Design for Multi-Drivers Off-Road Vehicle Driving-Line and its Performance Assessment
Authors: Yi Jianjun, Sun Yingce, Hu Diqing, Li Chenggang
Abstract:
Modularized design approach can facilitate the modeling of complex systems and support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Therefore it can improve the design efficiency and simplify the solving complicated problem. Multi-drivers off-road vehicle is comparatively complicated. Driving-line is an important core part to a vehicle; it has a significant contribution to the performance of a vehicle. Multi-driver off-road vehicles have complex driving-line, so its performance is heavily dependent on the driving-line. A typical off-road vehicle-s driving-line system consists of torque converter, transmission, transfer case and driving-axles, which transfer the power, generated by the engine and distribute it effectively to the driving wheels according to the road condition. According to its main function, this paper puts forward a modularized approach for designing and evaluation of vehicle-s driving-line. It can be used to effectively estimate the performance of driving-line during concept design stage. Through appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to the practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-drivers off-road vehicle.Keywords: Heavy-loaded Off-road Vehicle, Power Driving-line, Modularized Design, Performance Assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18492619 Modeling of a Vehicle Wheel System Having a Built-in Suspension Structure Consisted of Radially Deployed Colloidal Spokes between Hub and Rim
Authors: Barenten Suciu
Abstract:
In this work, by replacing the traditional solid spokes with colloidal spokes, a vehicle wheel with a built-in suspension structure is proposed. Following the background and description of the wheel system, firstly, a vibration model of the wheel equipped with colloidal spokes is proposed, and based on such model the equivalent damping coefficients and spring constants are identified. Then, a modified model of a quarter-vehicle moving on a rough pavement is proposed in order to estimate the transmissibility of vibration from the road roughness to vehicle body. In the end, the optimal design of the colloidal spokes and the optimum number of colloidal spokes are decided in order to minimize the transmissibility of vibration, i.e., to maximize the ride comfort of the vehicle.
Keywords: Built-in suspension, colloidal spoke, intrinsic spring, vibration analysis, wheel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19362618 Modeling of a Small Unmanned Aerial Vehicle
Authors: A. Elsayed Ahmed, A. Hafez, A. N. Ouda, H. Eldin Hussein Ahmed, H. Mohamed Abd-Elkader
Abstract:
Unmanned aircraft systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. . In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized, and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end the model is checked by matching between the behavior of the states of the nonlinear UAV and the resulted linear model with doublet at the control surfaces.
Keywords: Equations of motion, linearization, modeling, nonlinear model, UAV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56112617 Forward Simulation of a Parallel Hybrid Vehicle and Fuzzy Controller Design for Driving/Regenerative Propose
Authors: Peyman Naderi, Ali Farhadi, S. Mohammad Taghi Bathaee
Abstract:
One of the best ways for achievement of conventional vehicle changing to hybrid case is trustworthy simulation result and using of driving realities. For this object, in this paper, at first sevendegree- of-freedom dynamical model of vehicle will be shown. Then by using of statically model of engine, gear box, clutch, differential, electrical machine and battery, the hybrid automobile modeling will be down and forward simulation of vehicle for pedals to wheels power transformation will be obtained. Then by design of a fuzzy controller and using the proper rule base, fuel economy and regenerative braking will be marked. Finally a series of MATLAB/SIMULINK simulation results will be proved the effectiveness of proposed structure.Keywords: Hybrid, Driving, Fuzzy, Regeneration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14732616 Electrification Strategy of Hybrid Electric Vehicle as a Solution to Decrease CO2 Emission in Cities
Authors: M. Mourad, K. Mahmoud
Abstract:
Recently hybrid vehicles have become a major concern as one alternative vehicles. This type of hybrid vehicle contributes greatly to reducing pollution. Therefore, this work studies the influence of electrification phase of hybrid electric vehicle on emission of vehicle at different road conditions. To accomplish this investigation, a simulation model was used to evaluate the external characteristics of the hybrid electric vehicle according to variant conditions of road resistances. Therefore, this paper reports a methodology to decrease the vehicle emission especially greenhouse gas emission inside cities. The results show the effect of electrification on vehicle performance characteristics. The results show that CO2 emission of vehicle decreases up to 50.6% according to an urban driving cycle due to applying the electrification strategy for hybrid electric vehicle.
Keywords: Electrification strategy, hybrid electric vehicle, CO2 emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7892615 Mechanical Qualification Test Campaign on the Demise Observation Capsule
Authors: B. Tiseo, V. Quaranta, G. Bruno, R. Gardi, T. Watts, S. Dussy
Abstract:
This paper describes the qualification test campaign performed on the Demise Observation Capsule DOC-EQM as part of the Future Launch Preparatory Program FLPP3. The mechanical environment experienced during launch ascent and separation phase was first identified and then replicated in terms of sine, random and shock vibration. The loads identification is derived by selecting the worst possible case. Vibration and shock qualification test performed at CIRA Space Qualification laboratory is herein described. Mechanical fixtures’ design and validation, carried out by means of FEM, is also addressed due to its fundamental role in the vibrational test campaign. The Demise Observation Capsule (DOC) successfully passed the qualification test campaign. Functional test and resonance search have not been point any fault and damages of the capsule.
Keywords: Capsule, demise, DOC, launch environment, Re-Entry, qualification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5792614 Implementation and Modeling of a Quadrotor
Authors: Ersan Aktas, Eren Turanoğuz
Abstract:
In this study, the quad-electrical rotor driven unmanned aerial vehicle system is designed and modeled using fundamental dynamic equations. After that, mechanical, electronical and control system of the air vehicle are designed and implemented. Brushless motor speeds are altered via electronic speed controllers in order to achieve desired controllability. The vehicle's fundamental Euler angles (i.e., roll angle, pitch angle, and yaw angle) are obtained via AHRS sensor. These angles are provided as an input to the control algorithm that run on soft the processor on the electronic card. The vehicle control algorithm is implemented in the electronic card. Controller is designed and improved for each Euler angles. Finally, flight tests have been performed to observe and improve the flight characteristics.
Keywords: Quadrotor, UAS applications, control architectures, PID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16062613 Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries
Authors: Josua K. Junias, Fillemon N. Nangolo, Petrina T. Johaness
Abstract:
The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. The combined effects of asymmetrical vehicle loading and uneven road surfaces has an effect on pavement dynamic loading. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading.
Keywords: Eccentricities, pavement dynamic loading, vertical displacement dynamic response, heavy vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582612 Vehicle Detection Method using Haar-like Feature on Real Time System
Authors: Sungji Han, Youngjoon Han, Hernsoo Hahn
Abstract:
This paper presents a robust vehicle detection approach using Haar-like feature. It is possible to get a strong edge feature from this Haar-like feature. Therefore it is very effective to remove the shadow of a vehicle on the road. And we can detect the boundary of vehicles accurately. In the paper, the vehicle detection algorithm can be divided into two main steps. One is hypothesis generation, and the other is hypothesis verification. In the first step, it determines vehicle candidates using features such as a shadow, intensity, and vertical edge. And in the second step, it determines whether the candidate is a vehicle or not by using the symmetry of vehicle edge features. In this research, we can get the detection rate over 15 frames per second on our embedded system.
Keywords: vehicle detection, haar-like feauture, single camera, real time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33342611 Changes in Fine PM Pollution Levels with Tightening of Regulations on Vehicle Emissions
Authors: Akihiro Iijima, Kimiyo Kumagai
Abstract:
A long-term campaign for monitoring the concentration of atmospheric Particulate Matter (PM) was conducted at multiple sites located in the center and suburbs of the Tokyo Metropolitan Area in Japan. The concentration of fine PM has shown a declining trend over the last two decades. A positive matrix factorization model elucidated that the contribution of combustion sources was drastically reduced. In Japan, the regulations on vehicle exhaust emissions were phased in and gradually tightened over the last two decades, which has triggered a notable reduction in PM emissions from automobiles and has contributed to the mitigation of the problem of fine PM pollution.Keywords: Air pollution, Diesel-powered vehicle, Positive matrix factorization, Receptor modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17652610 Trial Development the Evaluation Method of Quantification the Feeling of Preventing Visibility by Front A Pillar
Authors: T. Arakawa, H. Sato
Abstract:
There are many drivers who feel right A pillar of Japanese right-hand-drive car preventing visibility on turning right or left at intersection. On the other hand, there is a report that almost pedestrian accident is caused by the delay of finding pedestrian by drivers and this is found by drivers’ eye movement. Thus, we developed the evaluation method of quantification using drivers’ eye movement data by least squares estimation and we applied this method to commercial vehicle and evaluation the visibility. It is suggested that visibility of vehicle can be quantified and estimated by linear model obtained from experimental eye fixation data and information of vehicle dimensions.
Keywords: Eye fixation, modeling, obstacle feeling, right A pillar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16362609 The Effect of Gross Vehicle Weight on the Stability of Heavy Vehicle during Cornering
Authors: Nurzaki Ikhsan, Ahmad Saifizul Abdullah, Rahizar Ramli
Abstract:
One of the functions of the commercial heavy vehicle is to safely and efficiently transport goods and people. Due to its size and carrying capacity, it is important to study the vehicle dynamic stability during cornering. Study has shown that there are a number of overloaded heavy vehicles or permissible Gross Vehicle Weight (GVW) violations recorded at selected areas in Malaysia assigned by its type and category. Thus, the objective of this study is to investigate the correlation and effect of the GVW on heavy vehicle stability during cornering event using simulation. Various selected heavy vehicle types and category are simulated using IPG/Truck Maker® with different GVW and road condition (coefficient of friction of road surface), while the speed, driver characteristic, center of gravity of load and road geometry are constant. Based on the analysis, the relationship between GVW and lateral acceleration were established. As expected, on the same value of coefficient of friction, the maximum lateral acceleration would be increased as the GVW increases.Keywords: Heavy Vehicle, Road Safety, Vehicle Stability, Lateral Acceleration, Gross Vehicle Weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30902608 A Comprehensive model for developing of Steer-By-Wire System
Authors: Reza Kazemi , Iman Mousavinejad
Abstract:
Steer-By-Wire ( SBW ) has several advantages of packaging flexibility , advanced vehicle control system ,and superior performance . SBW has no mechanical linkage between the steering gear and the steering column. It is possible to control the steering wheel and the front-wheel steering independently. SBW system is composed of two motors controlled by ECU. One motor in the steering wheel is to improve the driver's steering feel and the other motor in the steering linkage is to improve the vehicle maneuverability and stability. This paper shows a new approach at modeling of SBW system by Bond Graph theory. The mechanical parts , the steering wheel motor and the front wheel motor will be modeled by this theory. The work in the paper will help to guide further researches on control algorithm of the SBW system .
Keywords: Steer-By-Wire ( SBW ), Bond Graph theory, Electronic-Control-Unit ( ECU ) , Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36522607 Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow
Authors: N. C. Sarkar, A. Bhaskar, Z. Zheng
Abstract:
The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation.
Keywords: Area-based traffic, car-following model, micro-simulation, stochastic modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7742606 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification
Authors: Xiao Chen, Xiaoying Kong, Min Xu
Abstract:
This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.
Keywords: Vehicle classification, signal processing, road traffic model, magnetic sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14012605 Robust Control Synthesis for an Unmanned Underwater Vehicle
Authors: A. Budiyono
Abstract:
The control design for unmanned underwater vehicles (UUVs) is challenging due to the uncertainties in the complex dynamic modeling of the vehicle as well as its unstructured operational environment. To cope with these difficulties, a practical robust control is therefore desirable. The paper deals with the application of coefficient diagram method (CDM) for a robust control design of an autonomous underwater vehicle. The CDM is an algebraic approach in which the characteristic polynomial and the controller are synthesized simultaneously. Particularly, a coefficient diagram (comparable to Bode diagram) is used effectively to convey pertinent design information and as a measure of trade-off between stability, response speed and robustness. In the polynomial ring, Kharitonov polynomials are employed to analyze the robustness of the controller due to parametric uncertainties.
Keywords: coefficient diagram method, robust control, Kharitonov polynomials, unmanned underwater vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20882604 Modeling Reaction Time in Car-Following Behaviour Based on Human Factors
Authors: Atif Mehmood, Said M. Easa
Abstract:
This paper develops driver reaction-time models for car-following analysis based on human factors. The reaction time was classified as brake-reaction time (BRT) and acceleration/deceleration reaction time (ADRT). The BRT occurs when the lead vehicle is barking and its brake light is on, while the ADRT occurs when the driver reacts to adjust his/her speed using the gas pedal only. The study evaluates the effect of driver characteristics and traffic kinematic conditions on the driver reaction time in a car-following environment. The kinematic conditions introduced urgency and expectancy based on the braking behaviour of the lead vehicle at different speeds and spacing. The kinematic conditions were used for evaluating the BRT and are classified as normal, surprised, and stationary. Data were collected on a driving simulator integrated into a real car and included the BRT and ADRT (as dependent variables) and driver-s age, gender, driving experience, driving intensity (driving hours per week), vehicle speed, and spacing (as independent variables). The results showed that there was a significant difference in the BRT at normal, surprised, and stationary scenarios and supported the hypothesis that both urgency and expectancy had significant effects on BRT. Driver-s age, gender, speed, and spacing were found to be significant variables for the BRT in all scenarios. The results also showed that driver-s age and gender were significant variables for the ADRT. The research presented in this paper is part of a larger project to develop a driversensitive in-vehicle rear-end collision warning system.Keywords: Brake reaction time, car-following, human factors, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43142603 A Study on Remote On-Line Diagnostic System for Vehicles by Integrating the Technology of OBD, GPS, and 3G
Authors: Jyong Lin, Shih-Chang Chen, Yu-Tsen Shih, Shi-Huang Chen
Abstract:
This paper presents a remote on-line diagnostic system for vehicles via the use of On-Board Diagnostic (OBD), GPS, and 3G techniques. The main parts of the proposed system are on-board computer, vehicle monitor server, and vehicle status browser. First, the on-board computer can obtain the location of deriver and vehicle status from GPS receiver and OBD interface, respectively. Then on-board computer will connect with the vehicle monitor server through 3G network to transmit the real time vehicle system status. Finally, vehicle status browser could show the remote vehicle status including vehicle speed, engine rpm, battery voltage, engine coolant temperature, and diagnostic trouble codes. According to the experimental results, the proposed system can help fleet managers and car knockers to understand the remote vehicle status. Therefore this system can decrease the time of fleet management and vehicle repair due to the fleet managers and car knockers who find the diagnostic trouble messages in time.Keywords: Diagnostic Trouble Code (DTC), Electronic Control Unit (ECU), Global Position System (GPS), On-Board Diagnostic (OBD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012