Search results for: Elliptic Curve Cryptography (ECC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 523

Search results for: Elliptic Curve Cryptography (ECC)

523 Improved of Elliptic Curves Cryptography over a Ring

Authors: A. Chillali, A. Tadmori, M. Ziane

Abstract:

In this article we will study the elliptic curve defined over the ring An and we define the mathematical operations of ECC, which provides a high security and advantage for wireless applications compared to other asymmetric key cryptosystem.

Keywords: Elliptic Curves, Finite Ring, Cryptography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
522 SIP Authentication Scheme using ECDH

Authors: Aytunc Durlanik, Ibrahim Sogukpinar

Abstract:

SIP (Session Initiation Protocol), using HTML based call control messaging which is quite simple and efficient, is being replaced for VoIP networks recently. As for authentication and authorization purposes there are many approaches and considerations for securing SIP to eliminate forgery on the integrity of SIP messages. On the other hand Elliptic Curve Cryptography has significant advantages like smaller key sizes, faster computations on behalf of other Public Key Cryptography (PKC) systems that obtain data transmission more secure and efficient. In this work a new approach is proposed for secure SIP authentication by using a public key exchange mechanism using ECC. Total execution times and memory requirements of proposed scheme have been improved in comparison with non-elliptic approaches by adopting elliptic-based key exchange mechanism.

Keywords: SIP, Elliptic Curve Cryptography, voice over IP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
521 Implementing Authentication Protocol for Exchanging Encrypted Messages via an Authentication Server Based on Elliptic Curve Cryptography with the ElGamal-s Algorithm

Authors: Konstantinos Chalkias, George Filiadis, George Stephanides

Abstract:

In this paper the authors propose a protocol, which uses Elliptic Curve Cryptography (ECC) based on the ElGamal-s algorithm, for sending small amounts of data via an authentication server. The innovation of this approach is that there is no need for a symmetric algorithm or a safe communication channel such as SSL. The reason that ECC has been chosen instead of RSA is that it provides a methodology for obtaining high-speed implementations of authentication protocols and encrypted mail techniques while using fewer bits for the keys. This means that ECC systems require smaller chip size and less power consumption. The proposed protocol has been implemented in Java to analyse its features and vulnerabilities in the real world.

Keywords: Elliptic Curve Cryptography, ElGamal, authentication protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
520 Fingerprint Image Encryption Using a 2D Chaotic Map and Elliptic Curve Cryptography

Authors: D. M. S. Bandara, Yunqi Lei, Ye Luo

Abstract:

Fingerprints are suitable as long-term markers of human identity since they provide detailed and unique individual features which are difficult to alter and durable over life time. In this paper, we propose an algorithm to encrypt and decrypt fingerprint images by using a specially designed Elliptic Curve Cryptography (ECC) procedure based on block ciphers. In addition, to increase the confusing effect of fingerprint encryption, we also utilize a chaotic-behaved method called Arnold Cat Map (ACM) for a 2D scrambling of pixel locations in our method. Experimental results are carried out with various types of efficiency and security analyses. As a result, we demonstrate that the proposed fingerprint encryption/decryption algorithm is advantageous in several different aspects including efficiency, security and flexibility. In particular, using this algorithm, we achieve a margin of about 0.1% in the test of Number of Pixel Changing Rate (NPCR) values comparing to the-state-of-the-art performances.

Keywords: Arnold cat map, biometric encryption, block cipher, elliptic curve cryptography, fingerprint encryption, Koblitz’s Encoding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1100
519 Efficient Hardware Implementation of an Elliptic Curve Cryptographic Processor Over GF (2 163)

Authors: Massoud Masoumi, Hosseyn Mahdizadeh

Abstract:

A new and highly efficient architecture for elliptic curve scalar point multiplication which is optimized for a binary field recommended by NIST and is well-suited for elliptic curve cryptographic (ECC) applications is presented. To achieve the maximum architectural and timing improvements we have reorganized and reordered the critical path of the Lopez-Dahab scalar point multiplication architecture such that logic structures are implemented in parallel and operations in the critical path are diverted to noncritical paths. With G=41, the proposed design is capable of performing a field multiplication over the extension field with degree 163 in 11.92 s with the maximum achievable frequency of 251 MHz on Xilinx Virtex-4 (XC4VLX200) while 22% of the chip area is occupied, where G is the digit size of the underlying digit-serial finite field multiplier.

Keywords: Elliptic curve cryptography, FPGA implementation, scalar point multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558
518 Cryptography Over Elliptic Curve Of The Ring Fq[e], e4 = 0

Authors: Chillali Abdelhakim

Abstract:

Groups where the discrete logarithm problem (DLP) is believed to be intractable have proved to be inestimable building blocks for cryptographic applications. They are at the heart of numerous protocols such as key agreements, public-key cryptosystems, digital signatures, identification schemes, publicly verifiable secret sharings, hash functions and bit commitments. The search for new groups with intractable DLP is therefore of great importance.The goal of this article is to study elliptic curves over the ring Fq[], with Fq a finite field of order q and with the relation n = 0, n ≥ 3. The motivation for this work came from the observation that several practical discrete logarithm-based cryptosystems, such as ElGamal, the Elliptic Curve Cryptosystems . In a first time, we describe these curves defined over a ring. Then, we study the algorithmic properties by proposing effective implementations for representing the elements and the group law. In anther article we study their cryptographic properties, an attack of the elliptic discrete logarithm problem, a new cryptosystem over these curves.

Keywords: Elliptic Curve Over Ring, Discrete Logarithm Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3584
517 Alternative Key Exchange Algorithm Based on Elliptic Curve Digital Signature Algorithm Certificate and Usage in Applications

Authors: A. Andreasyan, C. Connors

Abstract:

The Elliptic Curve Digital Signature algorithm-based X509v3 certificates are becoming more popular due to their short public and private key sizes. Moreover, these certificates can be stored in Internet of Things (IoT) devices, with limited resources, using less memory and transmitted in network security protocols, such as Internet Key Exchange (IKE), Transport Layer Security (TLS) and Secure Shell (SSH) with less bandwidth. The proposed method gives another advantage, in that it increases the performance of the above-mentioned protocols in terms of key exchange by saving one scalar multiplication operation.

Keywords: Cryptography, elliptic curve digital signature algorithm, key exchange, network security protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 608
516 A Study of General Attacks on Elliptic Curve Discrete Logarithm Problem over Prime Field and Binary Field

Authors: Tun Myat Aung, Ni Ni Hla

Abstract:

This paper begins by describing basic properties of finite field and elliptic curve cryptography over prime field and binary field. Then we discuss the discrete logarithm problem for elliptic curves and its properties. We study the general common attacks on elliptic curve discrete logarithm problem such as the Baby Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman method, and describe in detail experiments of these attacks over prime field and binary field. The paper finishes by describing expected running time of the attacks and suggesting strong elliptic curves that are not susceptible to these attacks.c

Keywords: Discrete logarithm problem, general attacks, elliptic curves, strong curves, prime field, binary field, attack experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
515 Proposed Developments of Elliptic Curve Digital Signature Algorithm

Authors: Sattar B. Sadkhan, Najlae Falah Hameed

Abstract:

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of DSA, where it is a digital signature scheme designed to provide a digital signature based on a secret number known only to the signer and also on the actual message being signed. These digital signatures are considered the digital counterparts to handwritten signatures, and are the basis for validating the authenticity of a connection. The security of these schemes results from the infeasibility to compute the signature without the private key. In this paper we introduce a proposed to development the original ECDSA with more complexity.

Keywords: Elliptic Curve Digital Signature Algorithm, DSA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
514 The Number of Rational Points on Elliptic Curves and Circles over Finite Fields

Authors: Betül Gezer, Ahmet Tekcan, Osman Bizim

Abstract:

In elliptic curve theory, number of rational points on elliptic curves and determination of these points is a fairly important problem. Let p be a prime and Fp be a finite field and k ∈ Fp. It is well known that which points the curve y2 = x3 + kx has and the number of rational points of on Fp. Consider the circle family x2 + y2 = r2. It can be interesting to determine common points of these two curve families and to find the number of these common points. In this work we study this problem.

Keywords: Elliptic curves over finite fields, rational points on elliptic curves and circles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
513 An Attack on the Lucas Based El-Gamal Cryptosystem in the Elliptic Curve Group Over Finite Field Using Greater Common Divisor

Authors: Lee Feng Koo, Tze Jin Wong, Pang Hung Yiu, Nik Mohd Asri Nik Long

Abstract:

Greater common divisor (GCD) attack is an attack that relies on the polynomial structure of the cryptosystem. This attack required two plaintexts differ from a fixed number and encrypted under same modulus. This paper reports a security reaction of Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field under GCD attack. Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field was exposed mathematically to the GCD attack using GCD and Dickson polynomial. The result shows that the cryptanalyst is able to get the plaintext without decryption by using GCD attack. Thus, the study concluded that it is highly perilous when two plaintexts have a slight difference from a fixed number in the same Elliptic curve group over finite field.

Keywords: Decryption, encryption, elliptic curve, greater common divisor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
512 Implementation and Analysis of Elliptic Curve Cryptosystems over Polynomial basis and ONB

Authors: Yong-Je Choi, Moo-Seop Kim, Hang-Rok Lee, Ho-Won Kim

Abstract:

Polynomial bases and normal bases are both used for elliptic curve cryptosystems, but field arithmetic operations such as multiplication, inversion and doubling for each basis are implemented by different methods. In general, it is said that normal bases, especially optimal normal bases (ONB) which are special cases on normal bases, are efficient for the implementation in hardware in comparison with polynomial bases. However there seems to be more examined by implementing and analyzing these systems under similar condition. In this paper, we designed field arithmetic operators for each basis over GF(2233), which field has a polynomial basis recommended by SEC2 and a type-II ONB both, and analyzed these implementation results. And, in addition, we predicted the efficiency of two elliptic curve cryptosystems using these field arithmetic operators.

Keywords: Elliptic Curve Cryptosystem, Crypto Algorithm, Polynomial Basis, Optimal Normal Basis, Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
511 Novel Method for Elliptic Curve Multi-Scalar Multiplication

Authors: Raveen R. Goundar, Ken-ichi Shiota, Masahiko Toyonaga

Abstract:

The major building block of most elliptic curve cryptosystems are computation of multi-scalar multiplication. This paper proposes a novel algorithm for simultaneous multi-scalar multiplication, that is by employing addition chains. The previously known methods utilizes double-and-add algorithm with binary representations. In order to accomplish our purpose, an efficient empirical method for finding addition chains for multi-exponents has been proposed.

Keywords: elliptic curve cryptosystems, multi-scalar multiplication, addition chains, Fibonacci sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
510 Scalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition

Authors: Chiou-Yng Lee, Wen-Yo Lee, Chieh-Tsai Wu, Cheng-Chen Yang

Abstract:

Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit level and digi -level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba schemes, and used that to derive a novel scalable multiplier architecture. Analytical results show that the proposed multiplier provides a trade-off between space and time complexities. Our proposed multiplier is modular, regular, and suitable for very large scale integration (VLSI) implementations. It involves less area complexity compared to the multipliers based on traditional decomposition methods. It is therefore, more suitable for efficient hardware implementation of pairing based cryptography and elliptic curve cryptography (ECC) in constraint driven applications.

Keywords: Digit-serial systolic multiplier, elliptic curve cryptography (ECC), Karatsuba algorithm (KA), shifted polynomial basis (SPB), pairing computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
509 A New Design Partially Blind Signature Scheme Based on Two Hard Mathematical Problems

Authors: Nedal Tahat

Abstract:

Recently, many existing partially blind signature scheme based on a single hard problem such as factoring, discrete logarithm, residuosity or elliptic curve discrete logarithm problems. However sooner or later these systems will become broken and vulnerable, if the factoring or discrete logarithms problems are cracked. This paper proposes a secured partially blind signature scheme based on factoring (FAC) problem and elliptic curve discrete logarithms (ECDL) problem. As the proposed scheme is focused on factoring and ECDLP hard problems, it has a solid structure and will totally leave the intruder bemused because it is very unlikely to solve the two hard problems simultaneously. In order to assess the security level of the proposed scheme a performance analysis has been conducted. Results have proved that the proposed scheme effectively deals with the partial blindness, randomization, unlinkability and unforgeability properties. Apart from this we have also investigated the computation cost of the proposed scheme. The new proposed scheme is robust and it is difficult for the malevolent attacks to break our scheme.

Keywords: Cryptography, Partially Blind Signature, Factoring, Elliptic Curve Discrete Logarithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
508 Solving 94-bit ECDLP with 70 Computers in Parallel

Authors: Shunsuke Miyoshi, Yasuyuki Nogami, Takuya Kusaka, Nariyoshi Yamai

Abstract:

Elliptic curve discrete logarithm problem(ECDLP) is one of problems on which the security of pairing-based cryptography is based. This paper considers Pollard’s rho method to evaluate the security of ECDLP on Barreto-Naehrig(BN) curve that is an efficient pairing-friendly curve. Some techniques are proposed to make the rho method efficient. Especially, the group structure on BN curve, distinguished point method, and Montgomery trick are well-known techniques. This paper applies these techniques and shows its optimization. According to the experimental results for which a large-scale parallel system with MySQL is applied, 94-bit ECDLP was solved about 28 hours by parallelizing 71 computers.

Keywords: Pollard’s rho method, BN curve, Montgomery multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
507 Finding More Non-Supersingular Elliptic Curves for Pairing-Based Cryptosystems

Authors: Pu Duan, Shi Cui, Choong Wah Chan

Abstract:

Finding suitable non-supersingular elliptic curves for pairing-based cryptosystems becomes an important issue for the modern public-key cryptography after the proposition of id-based encryption scheme and short signature scheme. In previous work different algorithms have been proposed for finding such elliptic curves when embedding degree k ∈ {3, 4, 6} and cofactor h ∈ {1, 2, 3, 4, 5}. In this paper a new method is presented to find more non-supersingular elliptic curves for pairing-based cryptosystems with general embedding degree k and large values of cofactor h. In addition, some effective parameters of these non-supersingular elliptic curves are provided in this paper.

Keywords: Family of group order, kth root of unity, non-supersingular elliptic curves polynomial field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
506 Rational Points on Elliptic Curves 2 3 3y = x + a inF , where p 5(mod 6) is Prime

Authors: Gokhan Soydan, Musa Demirci, Nazli Yildiz Ikikardes, Ismail Naci Cangul

Abstract:

In this work, we consider the rational points on elliptic curves over finite fields Fp where p ≡ 5 (mod 6). We obtain results on the number of points on an elliptic curve y2 ≡ x3 + a3(mod p), where p ≡ 5 (mod 6) is prime. We give some results concerning the sum of the abscissae of these points. A similar case where p ≡ 1 (mod 6) is considered in [5]. The main difference between two cases is that when p ≡ 5 (mod 6), all elements of Fp are cubic residues.

Keywords: Elliptic curves over finite fields, rational points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252
505 A Design of Elliptic Curve Cryptography Processor Based on SM2 over GF(p)

Authors: Shiji Hu, Lei Li, Wanting Zhou, Daohong Yang

Abstract:

The data encryption is the foundation of today’s communication. On this basis, to improve the speed of data encryption and decryption is always an important goal for high-speed applications. This paper proposed an elliptic curve crypto processor architecture based on SM2 prime field. Regarding hardware implementation, we optimized the algorithms in different stages of the structure. For modulo operation on finite field, we proposed an optimized improvement of the Karatsuba-Ofman multiplication algorithm and shortened the critical path through the pipeline structure in the algorithm implementation. Based on SM2 recommended prime field, a fast modular reduction algorithm is used to reduce 512-bit data obtained from the multiplication unit. The radix-4 extended Euclidean algorithm was used to realize the conversion between the affine coordinate system and the Jacobi projective coordinate system. In the parallel scheduling point operations on elliptic curves, we proposed a three-level parallel structure of point addition and point double based on the Jacobian projective coordinate system. Combined with the scalar multiplication algorithm, we added mutual pre-operation to the point addition and double point operation to improve the efficiency of the scalar point multiplication. The proposed ECC hardware architecture was verified and implemented on Xilinx Virtex-7 and ZYNQ-7 platforms, and each 256-bit scalar multiplication operation took 0.275ms. The performance for handling scalar multiplication is 32 times that of CPU (dual-core ARM Cortex-A9).

Keywords: Elliptic curve cryptosystems, SM2, modular multiplication, point multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 265
504 Elliptic Divisibility Sequences over Finite Fields

Authors: Betül Gezer, Ahmet Tekcan, Osman Bizim

Abstract:

In this work, we study elliptic divisibility sequences over finite fields. Morgan Ward in [14], [15] gave arithmetic theory of elliptic divisibility sequences and formulas for elliptic divisibility sequences with rank two over finite field Fp. We study elliptic divisibility sequences with rank three, four and five over a finite field Fp, where p > 3 is a prime and give general terms of these sequences and then we determine elliptic and singular curves associated with these sequences.

Keywords: Elliptic divisibility sequences, singular elliptic divisibilitysequences, elliptic curves, singular curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
503 Positive Definite Quadratic Forms, Elliptic Curves and Cubic Congruences

Authors: Ahmet Tekcan

Abstract:

Let F(x, y) = ax2 + bxy + cy2 be a positive definite binary quadratic form with discriminant Δ whose base points lie on the line x = -1/m for an integer m ≥ 2, let p be a prime number and let Fp be a finite field. Let EF : y2 = ax3 + bx2 + cx be an elliptic curve over Fp and let CF : ax3 + bx2 + cx ≡ 0(mod p) be the cubic congruence corresponding to F. In this work we consider some properties of positive definite quadratic forms, elliptic curves and cubic congruences.

Keywords: Binary quadratic form, elliptic curves, cubic congruence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
502 Secure Protocol for Short Message Service

Authors: Shubat S. Ahmeda, Ashraf M. Ali Edwila

Abstract:

Short Message Service (SMS) has grown in popularity over the years and it has become a common way of communication, it is a service provided through General System for Mobile Communications (GSM) that allows users to send text messages to others. SMS is usually used to transport unclassified information, but with the rise of mobile commerce it has become a popular tool for transmitting sensitive information between the business and its clients. By default SMS does not guarantee confidentiality and integrity to the message content. In the mobile communication systems, security (encryption) offered by the network operator only applies on the wireless link. Data delivered through the mobile core network may not be protected. Existing end-to-end security mechanisms are provided at application level and typically based on public key cryptosystem. The main concern in a public-key setting is the authenticity of the public key; this issue can be resolved by identity-based (IDbased) cryptography where the public key of a user can be derived from public information that uniquely identifies the user. This paper presents an encryption mechanism based on the IDbased scheme using Elliptic curves to provide end-to-end security for SMS. This mechanism has been implemented over the standard SMS network architecture and the encryption overhead has been estimated and compared with RSA scheme. This study indicates that the ID-based mechanism has advantages over the RSA mechanism in key distribution and scalability of increasing security level for mobile service.

Keywords: Elliptic Curve Cryptography (ECC), End-to-end Security, Identity-based Cryptography, Public Key, RSA, SMS Protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
501 The Number of Rational Points on Elliptic Curves y2 = x3 + a3 on Finite Fields

Authors: Musa Demirci, Nazlı Yıldız İkikardeş, Gökhan Soydan, İsmail Naci Cangül

Abstract:

In this work, we consider the rational points on elliptic curves over finite fields Fp. We give results concerning the number of points Np,a on the elliptic curve y2 ≡ x3 +a3(mod p) according to whether a and x are quadratic residues or non-residues. We use two lemmas to prove the main results first of which gives the list of primes for which -1 is a quadratic residue, and the second is a result from [1]. We get the results in the case where p is a prime congruent to 5 modulo 6, while when p is a prime congruent to 1 modulo 6, there seems to be no regularity for Np,a.

Keywords: Elliptic curves over finite fields, rational points, quadratic residue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2404
500 On The Elliptic Divisibility Sequences over Finite Fields

Authors: Osman Bizim

Abstract:

In this work we study elliptic divisibility sequences over finite fields. MorganWard in [11, 12] gave arithmetic theory of elliptic divisibility sequences. We study elliptic divisibility sequences, equivalence of these sequences and singular elliptic divisibility sequences over finite fields Fp, p > 3 is a prime.

Keywords: Elliptic divisibility sequences, equivalent sequences, singular sequences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
499 Cryptanalysis of Chang-Chang-s EC-PAKA Protocol for Wireless Mobile Networks

Authors: Hae-Soon Ahn, Eun-Jun Yoon

Abstract:

With the rapid development of wireless mobile communication, applications for mobile devices must focus on network security. In 2008, Chang-Chang proposed security improvements on the Lu et al.-s elliptic curve authentication key agreement protocol for wireless mobile networks. However, this paper shows that Chang- Chang-s improved protocol is still vulnerable to off-line password guessing attacks unlike their claims.

Keywords: Authentication, key agreement, wireless mobile networks, elliptic curve, password guessing attacks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
498 Experimental and Numerical Study of The Shock-Accelerated Elliptic Heavy Gas Cylinders

Authors: Jing S. Bai, Li Y. Zou, Tao Wang, Kun Liu, Wen B. Huang, Jin H. Liu, Ping Li, Duo W. Tan, CangL. Liu

Abstract:

We studied the evolution of elliptic heavy SF6 gas cylinder surrounded by air when accelerated by a planar Mach 1.25 shock. A multiple dynamics imaging technology has been used to obtain one image of the experimental initial conditions and five images of the time evolution of elliptic cylinder. We compared the width and height of the circular and two kinds of elliptic gas cylinders, and analyzed the vortex strength of the elliptic ones. Simulations are in very good agreement with the experiments, but due to the different initial gas cylinder shapes, a certain difference of the initial density peak and distribution exists between the circular and elliptic gas cylinders, and the latter initial state is more sensitive and more inenarrable.

Keywords: About four key words or phrases in alphabeticalorder, separated by commas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
497 Deniable Authentication Protocol Resisting Man-in-the-Middle Attack

Authors: Song Han, Wanquan Liu, Elizabeth Chang

Abstract:

Deniable authentication is a new protocol which not only enables a receiver to identify the source of a received message but also prevents a third party from identifying the source of the message. The proposed protocol in this paper makes use of bilinear pairings over elliptic curves, as well as the Diffie-Hellman key exchange protocol. Besides the security properties shared with previous authentication protocols, the proposed protocol provides the same level of security with smaller public key sizes.

Keywords: Deniable Authentication, Man-in-the-middleAttack, Cryptography, Elliptic Curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
496 The Elliptic Curves y2 = x3 - t2x over Fp

Authors: Ahmet Tekcan

Abstract:

Let p be a prime number, Fp be a finite field and t ∈ F*p= Fp- {0}. In this paper we obtain some properties of ellipticcurves Ep,t: y2= y2= x3- t2x over Fp. In the first sectionwe give some notations and preliminaries from elliptic curves. In the second section we consider the rational points (x, y) on Ep,t. Wegive a formula for the number of rational points on Ep,t over Fnp for an integer n ≥ 1. We also give some formulas for the sum of x?andy?coordinates of the points (x, y) on Ep,t. In the third section weconsider the rank of Et: y2= x3- t2x and its 2-isogenous curve Et over Q. We proved that the rank of Etand Etis 2 over Q. In the last section we obtain some formulas for the sums Σt∈F?panp,t for an integer n ≥ 1, where ap,t denote the trace of Frobenius.

Keywords: Elliptic curves over finite fields, rational points onelliptic curves, rank, trace of Frobenius.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
495 New DES based on Elliptic Curves

Authors: Ghada Abdelmouez M., Fathy S. Helail, Abdellatif A. Elkouny

Abstract:

It is known that symmetric encryption algorithms are fast and easy to implement in hardware. Also elliptic curves have proved to be a good choice for building encryption system. Although most of the symmetric systems have been broken, we can create a hybrid system that has the same properties of the symmetric encryption systems and in the same time, it has the strength of elliptic curves in encryption. As DES algorithm is considered the core of all successive symmetric encryption systems, we modified DES using elliptic curves and built a new DES algorithm that is hard to be broken and will be the core for all other symmetric systems.

Keywords: DES, Elliptic Curves, hybrid system, symmetricencryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
494 The Number of Rational Points on Singular Curvesy 2 = x(x - a)2 over Finite Fields Fp

Authors: Ahmet Tekcan

Abstract:

Let p ≥ 5 be a prime number and let Fp be a finite field. In this work, we determine the number of rational points on singular curves Ea : y2 = x(x - a)2 over Fp for some specific values of a.

Keywords: Singular curve, elliptic curve, rational points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446