Andy W. H. Khong


2 Localizing Acoustic Touch Impacts using Zip-stuffing in Complex k-space Domain

Authors: R. Bremananth, Andy W. H. Khong, A. Chitra


Visualizing sound and noise often help us to determine an appropriate control over the source localization. Near-field acoustic holography (NAH) is a powerful tool for the ill-posed problem. However, in practice, due to the small finite aperture size, the discrete Fourier transform, FFT based NAH couldn-t predict the activeregion- of-interest (AROI) over the edges of the plane. Theoretically few approaches were proposed for solving finite aperture problem. However most of these methods are not quite compatible for the practical implementation, especially near the edge of the source. In this paper, a zip-stuffing extrapolation approach has suggested with 2D Kaiser window. It is operated on wavenumber complex space to localize the predicted sources. We numerically form a practice environment with touch impact databases to test the localization of sound source. It is observed that zip-stuffing aperture extrapolation and 2D window with evanescent components provide more accuracy especially in the small aperture and its derivatives.

Keywords: extrapolation, FFT, acoustic source localization, Near-field acoustic holography (NAH), k-space wavenumber errors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
1 Localizing and Recognizing Integral Pitches of Cheque Document Images

Authors: Bremananth R., Veerabadran C. S., Andy W. H. Khong


Automatic reading of handwritten cheque is a computationally complex process and it plays an important role in financial risk management. Machine vision and learning provide a viable solution to this problem. Research effort has mostly been focused on recognizing diverse pitches of cheques and demand drafts with an identical outline. However most of these methods employ templatematching to localize the pitches and such schemes could potentially fail when applied to different types of outline maintained by the bank. In this paper, the so-called outline problem is resolved by a cheque information tree (CIT), which generalizes the localizing method to extract active-region-of-entities. In addition, the weight based density plot (WBDP) is performed to isolate text entities and read complete pitches. Recognition is based on texture features using neural classifiers. Legal amount is subsequently recognized by both texture and perceptual features. A post-processing phase is invoked to detect the incorrect readings by Type-2 grammar using the Turing machine. The performance of the proposed system was evaluated using cheque and demand drafts of 22 different banks. The test data consists of a collection of 1540 leafs obtained from 10 different account holders from each bank. Results show that this approach can easily be deployed without significant design amendments.

Keywords: Turing Machine, Texture Analysis, Signature Verification, text localization, Cheque reading, Connectivity checking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406