V. Arbabi

Publications

3 Study of Electro-Optical Properties of ZnS Nanoparticles Prepared by Colloidal Particles Method

Authors: A. Rahdar, V. Arbabi, H. Ghanbari

Abstract:

ZnS nanoparticles of different size have been synthesized using a colloidal particles method. Zns nanoparticles prepared with capping agent (mercaptoethanol) then were characterized using X-ray diffraction (XRD) and UV-Vis spectroscopy. The particle size of the nanoparticles calculated from the XRD patterns has been found in the range 1.85-2.44nm. Absorption spectra have been obtained using UV-Vis spectrophotometer to find the optical band gap and the obtained values have been founded to being range 3.83-4.59eV. It was also found that energy band gap increase with the increase in molar capping agent solution.

Keywords: Nanoparticle, X-Ray, ZnS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
2 Homogeneity of Microstructure and Mechanical Properties in Horizontal Continuous Cast Billet

Authors: V. Arbabi , I. Ebrahimzadeh, H. Ghanbari, M.M. Kaykha

Abstract:

Horizontal continuous casting is widely used to produce semi-finished non-Ferrous products. Homogeneity in the metallurgical characteristics and mechanical properties for this product is vital for industrial application. In the present work, the microstructure and mechanical properties of a horizontal continuous cast two-phase brass billet have been studied. Impact strength and hardness variations were examined and the phase composition and porosity studied with image analysis software. Distinct differences in mechanical properties were observed between the upper, middle and lower parts of the billet, which are explained in terms of the morphology and size of the phase in the microstructure. Hardness variation in the length of billet is higher in upper area but impact strength is higher in lower areas.

Keywords: Microstructure, impact strength, Horizontal Continuous Casting, Two-phase brasses, CuZn40Al1 alloy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
1 Semisolid Structure and Parameters for A360 Aluminum Alloy Prepared by Mechanical Stirring

Authors: MM.Kaykha, A. Kamarei, M. Safari, V. Arbabi

Abstract:

Semisolid metal processing uses solid–liquid slurries containing fine and globular solid particles uniformly distributed in a liquid matrix, which can be handled as a solid and flow like a liquid. In the recent years, many methods have been introduced for the production of semisolid slurries since it is scientifically sound and industrially viable with such preferred microstructures called thixotropic microstructures as feedstock materials. One such process that needs very low equipment investment and running costs is the cooling slope. In this research by using a mechanical stirrer slurry maker constructed by the authors, the effects of mechanical stirring parameters such as: stirring time, stirring temperature and stirring Speed on micro-structure and mechanical properties of A360 aluminum alloy in semi-solid forming, are investigated. It is determined that mold temperature and holding time of part in temperature of 580ºC have a great effect on micro-structure and mechanical properties(stirring temperature of 585ºC, stirring time of 20 minutes and stirring speed of 425 RPM). By optimizing the forming parameters, dendrite microstructure changes to globular and mechanical properties improves. This is because of breaking and globularzing dendrites of primary α-AL.

Keywords: Mechanical Properties, Semi-Solid Forming, Shear Rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917