Dr. Mehdi Saeidmanesh

Committee: International Scientific Committee of Chemical and Molecular Engineering
University: University Teknologi Malaysia (UTM)
Department: Department of Electrical and Computer Engineering
Research Fields: graphene nanoribbon, field effect transistors, short channel effects, channel length modulation,

Publications

2 Channel Length Modulation Effect on Monolayer Graphene Nanoribbon Field Effect Transistor

Authors: Mehdi Saeidmanesh, Razali Ismail

Abstract:

Recently, Graphene Nanoribbon Field Effect Transistors (GNR FETs) attract a great deal of attention due to their better performance in comparison with conventional devices. In this paper, channel length Modulation (CLM) effect on the electrical characteristics of GNR FETs is analytically studied and modeled. To this end, the special distribution of the electric potential along the channel and current-voltage characteristic of the device is modeled. The obtained results of analytical model are compared to the experimental data of published works. As a result, it is observable that considering the effect of CLM, the current-voltage response of GNR FET is more realistic.

Keywords: graphene nanoribbon, field effect transistors, short channel effects, channel length modulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
1 Energy and Distance Based Clustering: An Energy Efficient Clustering Method for Wireless Sensor Networks

Authors: Mehdi Saeidmanesh, Mojtaba Hajimohammadi, Ali Movaghar

Abstract:

In this paper, we propose an energy efficient cluster based communication protocol for wireless sensor network. Our protocol considers both the residual energy of sensor nodes and the distance of each node from the BS when selecting cluster-head. This protocol can successfully prolong the network-s lifetime by 1) reducing the total energy dissipation on the network and 2) evenly distributing energy consumption over all sensor nodes. In this protocol, the nodes with more energy and less distance from the BS are probable to be selected as cluster-head. Simulation results with MATLAB show that proposed protocol could increase the lifetime of network more than 94% for first node die (FND), and more than 6% for the half of the nodes alive (HNA) factor as compared with conventional protocols.

Keywords: Energy Efficiency, Wireless Sensor Networks, Clustering Methods, routing protocol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630

Abstracts

2 Channel Length Modulation Effect on Monolayer Graphene Nanoribbon Field Effect Transistor

Authors: Mehdi Saeidmanesh, Razali Ismail

Abstract:

Recently, Graphene Nanoribbon Field Effect Transistors (GNR FETs) attract a great deal of attention due to their better performance in comparison with conventional devices. In this paper, channel length Modulation (CLM) effect on the electrical characteristics of GNR FETs is analytically studied and modeled. To this end, the special distribution of the electric potential along the channel and current-voltage characteristic of the device is modeled. The obtained results of analytical model are compared to the experimental data of published works. As a result, it is observable that considering the effect of CLM, the current-voltage response of GNR FET is more realistic.

Keywords: graphene nanoribbon, field effect transistors, short channel effects, channel length modulation

Procedia PDF Downloads 231
1 A Novel Model for Saturation Velocity Region of Graphene Nanoribbon Transistor

Authors: Mehdi Saeidmanesh, Razali Ismail, Mohsen Khaledian, Mahdiar Hosseinghadiry

Abstract:

A semi-analytical model for impact ionization coefficient of graphene nanoribbon (GNR) is presented. The model is derived by calculating probability of electrons reaching ionization threshold energy Et and the distance traveled by electron gaining Et. In addition, ionization threshold energy is semi-analytically modeled for GNR. We justify our assumptions using analytic modeling and comparison with simulation results. Gaussian simulator together with analytical modeling is used in order to calculate ionization threshold energy and Kinetic Monte Carlo is employed to calculate ionization coefficient and verify the analytical results. Finally, the profile of ionization is presented using the proposed models and simulation and the results are compared with that of silicon.

Keywords: Systems Engineering, Nanostructures, electronic transport, semiconductor modeling

Procedia PDF Downloads 299