I-Ming Tang

Publications

5 Mathematical Model for Dengue Disease with Maternal Antibodies

Abstract:

Mathematical models can be used to describe the dynamics of the spread of infectious disease between susceptibles and infectious populations. Dengue fever is a re-emerging disease in the tropical and subtropical regions of the world. Its incidence has increased fourfold since 1970 and outbreaks are now reported quite frequently from many parts of the world. In dengue endemic regions, more cases of dengue infection in pregnancy and infancy are being found due to the increasing incidence. It has been reported that dengue infection was vertically transmitted to the infants. Primary dengue infection is associated with mild to high fever, headache, muscle pain and skin rash. Immune response includes IgM antibodies produced by the 5th day of symptoms and persist for 30-60 days. IgG antibodies appear on the 14th day and persist for life. Secondary infections often result in high fever and in many cases with hemorrhagic events and circulatory failure. In the present paper, a mathematical model is proposed to simulate the succession of dengue disease transmission in pregnancy and infancy. Stability analysis of the equilibrium points is carried out and a simulation is given for the different sets of parameter. Moreover, the bifurcation diagrams of our model are discussed. The controlling of this disease in infant cases is introduced in the term of the threshold condition. Downloads 1670
4 No one Set of Parameter Values Can Simulate the Epidemics Due to SARS Occurring at Different Localities

Authors: Weerachi Sarakorn, I-Ming Tang

Abstract:

A mathematical model for the transmission of SARS is developed. In addition to dividing the population into susceptible (high and low risk), exposed, infected, quarantined, diagnosed and recovered classes, we have included a class called untraced. The model simulates the Gompertz curves which are the best representation of the cumulative numbers of probable SARS cases in Hong Kong and Singapore. The values of the parameters in the model which produces the best fit of the observed data for each city are obtained by using a differential evolution algorithm. It is seen that the values for the parameters needed to simulate the observed daily behaviors of the two epidemics are different.

3 Effect of the Seasonal Variation in the Extrinsic Incubation Period on the Long Term Behavior of the Dengue Hemorrhagic Fever Epidemic

Authors: Puntani Pongsumpun, I-Ming Tang

Abstract:

The incidences of dengue hemorrhagic disease (DHF) over the long term exhibit a seasonal behavior. It has been hypothesized that these behaviors are due to the seasonal climate changes which in turn induce a seasonal variation in the incubation period of the virus while it is developing the mosquito. The standard dynamic analysis is applied for analysis the Susceptible-Exposed- Infectious-Recovered (SEIR) model which includes an annual variation in the length of the extrinsic incubation period (EIP). The presence of both asymptomatic and symptomatic infections is allowed in the present model. We found that dynamic behavior of the endemic state changes as the influence of the seasonal variation of the EIP becomes stronger. As the influence is further increased, the trajectory exhibits sustained oscillations when it leaves the chaotic region. Downloads 1489
2 Mathematical Model for the Transmission of P. Falciparum and P. Vivax Malaria along the Thai-Myanmar Border

Authors: Puntani Pongsumpun, I-Ming Tang

Abstract:

The most Malaria cases are occur along Thai-Mynmar border. Mathematical model for the transmission of Plasmodium falciparum and Plasmodium vivax malaria in a mixed population of Thais and migrant Burmese living along the Thai-Myanmar Border is studied. The population is separated into two groups, Thai and Burmese. Each population is divided into susceptible, infected, dormant and recovered subclasses. The loss of immunity by individuals in the infected class causes them to move back into the susceptible class. The person who is infected with Plasmodium vivax and is a member of the dormant class can relapse back into the infected class. A standard dynamical method is used to analyze the behaviors of the model. Two stable equilibrium states, a disease-free state and an epidemic state, are found to be possible in each population. A disease-free equilibrium state in the Thai population occurs when there are no infected Burmese entering the community. When infected Burmese enter the Thai community, an epidemic state can occur. It is found that the disease-free state is stable when the threshold number is less than one. The epidemic state is stable when a second threshold number is greater than one. Numerical simulations are used to confirm the results of our model.

1 Analysis of a Mathematical Model for Dengue Disease in Pregnant Cases

Abstract:

Dengue fever is an important human arboviral disease. Outbreaks are now reported quite often from many parts of the world. The number of cases involving pregnant women and infant cases are increasing every year. The illness is often severe and complications may occur. Deaths often occur because of the difficulties in early diagnosis and in the improper management of the diseases. Dengue antibodies from pregnant women are passed on to infants and this protects the infants from dengue infections. Antibodies from the mother are transferred to the fetus when it is still in the womb. In this study, we formulate a mathematical model to describe the transmission of this disease in pregnant women. The model is formulated by dividing the human population into pregnant women and non-pregnant human (men and non-pregnant women). Each class is subdivided into susceptible (S), infectious (I) and recovered (R) subclasses. We apply standard dynamical analysis to our model. Conditions for the local stability of the equilibrium points are given. The numerical simulations are shown. The bifurcation diagrams of our model are discussed. The control of this disease in pregnant women is discussed in terms of the threshold conditions.