Assoc. Prof. Dr. Fengmei Yao

Committee: International Scientific Committee of Environmental and Ecological Engineering
University: University of Chinese Academy of Sciences
Department: College of Earth Sciences
Research Fields: climate change, maize yields, varieties, planting date, impacts,

Publications

1 Grassland Phenology in Different Eco-Geographic Regions over the Tibetan Plateau

Authors: Jiahua Zhang, Fengmei Yao, Qing Chang

Abstract:

Studying on the response of vegetation phenology to climate change at different temporal and spatial scales is important for understanding and predicting future terrestrial ecosystem dynamics and the adaptation of ecosystems to global change. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset and climate data were used to analyze the dynamics of grassland phenology as well as their correlation with climatic factors in different eco-geographic regions and elevation units across the Tibetan Plateau. The results showed that during 2003–2012, the start of the grassland greening season (SOS) appeared later while the end of the growing season (EOS) appeared earlier following the plateau’s precipitation and heat gradients from southeast to northwest. The multi-year mean value of SOS showed differences between various eco-geographic regions and was significantly impacted by average elevation and regional average precipitation during spring. Regional mean differences for EOS were mainly regulated by mean temperature during autumn. Changes in trends of SOS in the central and eastern eco-geographic regions were coupled to the mean temperature during spring, advancing by about 7d/°C. However, in the two southwestern eco-geographic regions, SOS was delayed significantly due to the impact of spring precipitation. The results also showed that the SOS occurred later with increasing elevation, as expected, with a delay rate of 0.66 d/100m. For 2003–2012, SOS showed an advancing trend in low-elevation areas, but a delayed trend in high-elevation areas, while EOS was delayed in low-elevation areas, but advanced in high-elevation areas. Grassland SOS and EOS changes may be influenced by a variety of other environmental factors in each eco-geographic region.

Keywords: MODIS, elevation, grassland, phenology, climatic factors, Tibetan Plateau, eco-geographic regions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2405

Abstracts

3 Grassland Phenology in Different Eco-Geographic Regions over the Tibetan Plateau

Authors: Jiahua Zhang, Fengmei Yao, Qing Chang

Abstract:

Studying on the response of vegetation phenology to climate change at different temporal and spatial scales is important for understanding and predicting future terrestrial ecosystem dynamics andthe adaptation of ecosystems to global change. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset and climate data were used to analyze the dynamics of grassland phenology as well as their correlation with climatic factors in different eco-geographic regions and elevation units across the Tibetan Plateau. The results showed that during 2003–2012, the start of the grassland greening season (SOS) appeared later while the end of the growing season (EOS) appeared earlier following the plateau’s precipitation and heat gradients from southeast to northwest. The multi-year mean value of SOS showed differences between various eco-geographic regions and was significantly impacted by average elevation and regional average precipitation during spring. Regional mean differences for EOS were mainly regulated by mean temperature during autumn. Changes in trends of SOS in the central and eastern eco-geographic regions were coupled to the mean temperature during spring, advancing by about 7d/°C. However, in the two southwestern eco-geographic regions, SOS was delayed significantly due to the impact of spring precipitation. The results also showed that the SOS occurred later with increasing elevation, as expected, with a delay rate of 0.66 d/100m. For 2003–2012, SOS showed an advancing trend in low-elevation areas, but a delayed trend in high-elevation areas, while EOS was delayed in low-elevation areas, but advanced in high-elevation areas. Grassland SOS and EOS changes may be influenced by a variety of other environmental factors in each eco-geographic region.

Keywords: MODIS, elevation, grassland, phenology, eco-geographic regions, climatic factors, Tibetan Plateau

Procedia PDF Downloads 167
2 Did Chilling Injury of Rice Decrease under Climate Warming? A Case Study in Northeast China

Authors: Jiahua Zhang, Fengmei Yao, Pengcheng Qin, Min Liu

Abstract:

Global warming is expected to reduce the risk of low temperature stress in rice grown in temperate regions, but this impact has not been well verified by empirical studies directly on chilling injury in rice. In this study, a case study in Northeast China was presented to investigate whether the frequencies of chilling injury declined as a result of climate change, in comprehensive consideration of the potential effects from autonomous adaptation of rice production in response to climate change, such as shifts in cultivation timing and rice cultivars. It was found that frequency of total chilling injury (either delayed-growth type or sterile-type in a year) decreased but only to a limit extent in the context of climate change, mainly owing to a pronounced decrease in frequency of the delayed-growth chilling injury, while there was no overwhelming decreasing tendency for frequency of the sterile-type chilling injury, rather, it even increased considerably for some regions. If changes in cultivars had not occurred, risks of chilling injury of both types would have been much lower, specifically for the sterile-type chilling injury for avoiding deterioration in chilling sensitivity of rice cultivars. In addition, earlier planting helped lower the risk of chilling injury but still can not overweight the effects of introduction of new cultivars. It was concluded that risks of chilling injury in rice would not necessarily decrease as a result of climate change, considering the accompanying adaptation process may increase the chilling sensitivity of rice production system in a warmer climate conditions, and thus precautions should still be taken.

Keywords: Rice, chilling injury, CERES-rice model, climate warming, North east China

Procedia PDF Downloads 194
1 Estimation of Maize Yield by Using a Process-Based Model and Remote Sensing Data in the Northeast China Plain

Authors: Fengmei Yao, Jia Zhang, Yanjing Tan

Abstract:

The accurate estimation of crop yield is of great importance for the food security. In this study, a process-based mechanism model was modified to estimate yield of C4 crop by modifying the carbon metabolic pathway in the photosynthesis sub-module of the RS-P-YEC (Remote-Sensing-Photosynthesis-Yield estimation for Crops) model. The yield was calculated by multiplying net primary productivity (NPP) and the harvest index (HI) derived from the ratio of grain to stalk yield. The modified RS-P-YEC model was used to simulate maize yield in the Northeast China Plain during the period 2002-2011. The statistical data of maize yield from study area was used to validate the simulated results at county-level. The results showed that the Pearson correlation coefficient (R) was 0.827 (P < 0.01) between the simulated yield and the statistical data, and the root mean square error (RMSE) was 712 kg/ha with a relative error (RE) of 9.3%. From 2002-2011, the yield of maize planting zone in the Northeast China Plain was increasing with smaller coefficient of variation (CV). The spatial pattern of simulated maize yield was consistent with the actual distribution in the Northeast China Plain, with an increasing trend from the northeast to the southwest. Hence the results demonstrated that the modified process-based model coupled with remote sensing data was suitable for yield prediction of maize in the Northeast China Plain at the spatial scale.

Keywords: Remote Sensing, process-based model, C4 crop, maize yield, Northeast China Plain

Procedia PDF Downloads 226