Essam Al-Daoud

Publications

3 Improving Protein-Protein Interaction Prediction by Using Encoding Strategies and Random Indices

Authors: Essam Al-Daoud

Abstract:

A New features are extracted and compared to improve the prediction of protein-protein interactions. The basic idea is to select and use the best set of features from the Tensor matrices that are produced by the frequency vectors of the protein sequences. Three set of features are compared, the first set is based on the indices that are the most common in the interacting proteins, the second set is based on the indices that tend to be common in the interacting and non-interacting proteins, and the third set is constructed by using random indices. Moreover, three encoding strategies are compared; that are based on the amino asides polarity, structure, and chemical properties. The experimental results indicate that the highest accuracy can be obtained by using random indices with chemical properties encoding strategy and support vector machine.

Keywords: Protein-Protein Interactions, support vector machine, random indices, encoding strategies

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
2 Integration of Support Vector Machine and Bayesian Neural Network for Data Mining and Classification

Authors: Essam Al-Daoud

Abstract:

Several combinations of the preprocessing algorithms, feature selection techniques and classifiers can be applied to the data classification tasks. This study introduces a new accurate classifier, the proposed classifier consist from four components: Signal-to- Noise as a feature selection technique, support vector machine, Bayesian neural network and AdaBoost as an ensemble algorithm. To verify the effectiveness of the proposed classifier, seven well known classifiers are applied to four datasets. The experiments show that using the suggested classifier enhances the classification rates for all datasets.

Keywords: support vector machine, adaboost, MCMC, Bayesian neural network, Signal-to-Noise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
1 Unconditionally Secure Quantum Payment System

Authors: Essam Al-Daoud

Abstract:

A potentially serious problem with current payment systems is that their underlying hard problems from number theory may be solved by either a quantum computer or unanticipated future advances in algorithms and hardware. A new quantum payment system is proposed in this paper. The suggested system makes use of fundamental principles of quantum mechanics to ensure the unconditional security without prior arrangements between customers and vendors. More specifically, the new system uses Greenberger-Home-Zeilinger (GHZ) states and Quantum Key Distribution to authenticate the vendors and guarantee the transaction integrity.

Keywords: Quantum Key Distribution, Bell state, GHZ state, Quantum payment system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203