Agnieszka Nawrocka


3 Response Evaluation of Electronic Nose with Polymer-Composite and Metal Oxide Semiconductor Sensor towards Microbiological Quality of Rapeseed

Authors: Marcin Tadla, Robert Rusinek, Jolanta Wawrzyniak, Marzena Gawrysiak-Witulska, Agnieszka Nawrocka, Marek Gancarz


Rapeseeds were evaluated and classified by the static-headspace sampling method using electronic noses during the 25 days spoilage period. The Cyranose 320 comprising 32 polymer-composite sensors and VCA (Volatile Compound Analyzer - made in Institute of Agrophysics) built of 8 metal-oxide semiconductor (MOS) sensors were used to obtain sensor response (∆R/R). Each sample of spoiled material was divided into three parts and the degree of spoilage was measured four ways: determination of ergosterol content (ERG), colony forming units (CFU) and measurement with both e-noses. The study showed that both devices responsive to changes in the fungal microflora. Cyranose and VCA registered the change of domination microflora of fungi. After 7 days of storage, typical fungi for soil disappeared and appeared typical for storeroom was observed. In both cases, response ∆R/R decreased to the end of experiment, while ERG and JTK increased. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.

Keywords: Electronic Nose, fungal microflora, metal-oxide sensor, polymer-composite sensors

Procedia PDF Downloads 152
2 Relationship between Response of the Resistive Sensors on the Chosen Volatile Organic Compounds (VOCs) and Their Concentration

Authors: Marek Gancarz, Agnieszka Nawrocka, Robert Rusinek, Marcin Tadla


Volatile organic compounds (VOCs) are the fungi metabolites in the gaseous form produced during improper storage of agricultural commodities (e.g. grain, food). The spoilt commodities produce a wide range of VOCs including alcohols, esters, aldehydes, ketones, alkanes, alkenes, furans, phenols etc. The characteristic VOCs and odours can be determined by using electronic nose (e-Nose) which contains a matrix of different kinds of sensors e.g. resistive sensors. The aim of the present studies was to determine relationship between response of the resistive sensors on the chosen volatiles and their concentration. According to the literature, it was chosen volatiles characteristic for the cereals: ethanol, 3-methyl-1-butanol and hexanal. Analysis of the sensor signals shows that a signal shape is different for the different substances. Moreover, each VOC signal gives information about a maximum of the normalized sensor response (R/Rmax), an impregnation time (tIM) and a cleaning time at half maximum of R/Rmax (tCL). These three parameters can be regarded as a ‘VOC fingerprint’. Seven resistive sensors (TGS2600-B00, TGS2602-B00, TGS2610-C00, TGS2611-C00, TGS2611-E00, TGS2612-D00, TGS2620-C00) produced by Figaro USA Inc., and one (AS-MLV-P2) produced by AMS AG, Austria were used. Two out of seven sensors (TGS2611-E00, TGS2612-D00) did not react to the chosen VOCs. The most responsive sensor was AS-MLV-P2. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.

Keywords: Organic Compounds, Resistive Sensors, agricultural commodities, volatile

Procedia PDF Downloads 233
1 Electronic Nose for Monitoring Fungal Deterioration of Stored Rapeseed

Authors: Robert Rusinek, Marek Gancarz, Jolanta Wawrzyniak, Marzena Gawrysiak-Witulska, Dariusz Wiącek, Agnieszka Nawrocka


Investigations were performed to examine the possibility of using an electronic nose to monitor the development of fungal microflora during the first eighteen days of rapeseed storage. The Cyranose 320 device with polymer-composite sensors was used. Each sample of infected material was divided into three parts, and the degree of spoilage was measured in three ways: analysis of colony forming units (CFU), determination of ergosterol content (ERG), and measurement with the eNose. Principal component analysis (PCA) was performed on the generated patterns of signals, and six groups of different spoilage levels were isolated. The electronic nose with polymer-composite sensors under laboratory conditions distinguished between species of spoiled and unspoiled seeds with 100% accuracy. Despite some minor differences in the CFU and ergosterol content, the electronic nose provided responses correctly corresponding to the level of spoilage with 85% accuracy. Therefore, the main conclusion from the study is that the electronic nose is a promising tool for quick and non-destructive detection of the level of oil seed spoilage. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.

Keywords: Electronic Nose, rapeseed, colony forming units, ergosterol

Procedia PDF Downloads 183