Varun P. Gopi

Publications

1 A Floating Gate MOSFET Based Novel Programmable Current Reference

Authors: V. Suresh Babu, Haseena P. S., Varun P. Gopi, M. R. Baiju

Abstract:

In this paper a scheme is proposed for generating a programmable current reference which can be implemented in the CMOS technology. The current can be varied over a wide range by changing an external voltage applied to one of the control gates of FGMOS (Floating Gate MOSFET). For a range of supply voltages and temperature, CMOS current reference is found to be dependent, this dependence is compensated by subtracting two current outputs with the same dependencies on the supply voltage and temperature. The system performance is found to improve with the use of FGMOS. Mathematical analysis of the proposed circuit is done to establish supply voltage and temperature independence. Simulation and performance evaluation of the proposed current reference circuit is done using TANNER EDA Tools. The current reference shows the supply and temperature dependencies of 520 ppm/V and 312 ppm/oC, respectively. The proposed current reference can operate down to 0.9 V supply.

Keywords: current reference, Floating Gate MOSFET, self bias scheme, temperature independency, supply voltage independency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381

Abstracts

2 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection

Authors: V. Suresh Babu, Varun P. Gopi, Beema Akbar

Abstract:

Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.

Keywords: Colon Cancer, histopathological image, structural and statistical pattern recognition, multilayer perception

Procedia PDF Downloads 443
1 Feature Extraction Based on Contourlet Transform and Log Gabor Filter for Detection of Ulcers in Wireless Capsule Endoscopy

Authors: V. I. Thajudin Ahamed, Varun P. Gopi, Nimisha Elsa Koshy

Abstract:

The entire visualization of GastroIntestinal (GI) tract is not possible with conventional endoscopic exams. Wireless Capsule Endoscopy (WCE) is a low risk, painless, noninvasive procedure for diagnosing diseases such as bleeding, polyps, ulcers, and Crohns disease within the human digestive tract, especially the small intestine that was unreachable using the traditional endoscopic methods. However, analysis of massive images of WCE detection is tedious and time consuming to physicians. Hence, researchers have developed software methods to detect these diseases automatically. Thus, the effectiveness of WCE can be improved. In this paper, a novel textural feature extraction method is proposed based on Contourlet transform and Log Gabor filter to distinguish ulcer regions from normal regions. The results show that the proposed method performs well with a high accuracy rate of 94.16% using Support Vector Machine (SVM) classifier in HSV colour space.

Keywords: Ulcer, contourlet transform, Wireless Capsule Endoscopy, log gabor filter

Procedia PDF Downloads 425