P. B. Harathi

Abstracts

3 Spatial Variability of Soil Metal Contamination to Detect Cancer Risk Zones in Coimbatore Region of India

Authors: Janani Selvaraj, M. Prashanthi Devi, P. B. Harathi, Aarthi Mariappan

Abstract:

Anthropogenic modification of the urban environment has largely increased in the recent years in order to sustain the growing human population. Intense industrial activity, permanent and high traffic on the roads, a developed subterranean infrastructure network, land use patterns are just some specific characteristics. Every day, the urban environment is polluted by more or less toxic emissions, organic or metals wastes discharged from specific activities such as industrial, commercial, municipal. When these eventually deposit into the soil, the physical and chemical properties of the surrounding soil is changed, transforming it into a human exposure indicator. Metals are non-degradable and occur cumulative in soil due to regular deposits are a result of permanent human activity. Due to this, metals are a contaminant factor for soil when persistent over a long period of time and a possible danger for inhabitant’s health on prolonged exposure. Metals accumulated in contaminated soil may be transferred to humans directly, by inhaling the dust raised from top soil, or by ingesting, or by dermal contact and indirectly, through plants and animals grown on contaminated soil and used for food. Some metals, like Cu, Mn, Zn, are beneficial for human’s health and represent a danger only if their concentration is above permissible levels, but other metals, like Pb, As, Cd, Hg, are toxic even at trace level causing gastrointestinal and lung cancers. In urban areas, metals can be emitted from a wide variety of sources like industrial, residential, commercial activities. Our study interrogates the spatial distribution of heavy metals in soil in relation to their permissible levels and their association with the health risk to the urban population in Coimbatore, India. Coimbatore region is a high cancer risk zone and case records of gastro intestinal and respiratory cancer patients were collected from hospitals and geocoded in ArcGIS10.1. The data of patients pertaining to the urban limits were retained and checked for their diseases history based on their diagnosis and treatment. A disease map of cancer was prepared to show the disease distribution. It has been observed that in our study area Cr, Pb, As, Fe and Mg exceeded their permissible levels in the soil. Using spatial overlay analysis a relationship between environmental exposure to these potentially toxic elements in soil and cancer distribution in Coimbatore district was established to show areas of cancer risk. Through this, our study throws light on the impact of prolonged exposure to soil contamination in soil in the urban zones, thereby exploring the possibility to detect cancer risk zones and to create awareness among the exposed groups on cancer risk.

Keywords: Spatial analysis, India, Soil Contamination, Cancer Risk

Procedia PDF Downloads 274
2 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment

Authors: S. Balasubramanian, R. Sridhar, P. B. Harathi, S. Valarmathi

Abstract:

Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.

Keywords: Breast Cancer, Fuzzy Logic, MATLAB, ID3 algorithm

Procedia PDF Downloads 376
1 Spatio-Temporal Risk Analysis of Cancer to Assessed Environmental Exposures in Coimbatore, India

Authors: Janani Selvaraj, M. Prashanthi Devi, P. B. Harathi

Abstract:

Epidemiologic studies conducted over several decades have provided evidence to suggest that long-term exposure to elevated ambient levels of particulate air pollution is associated with increased mortality. Air quality risk management is significant in developing countries and it highlights the need to understand the role of ecologic covariates in the association between air pollution and mortality. Several new methods show promise in exploring the geographical distribution of disease and the identification of high risk areas using epidemiological maps. However, the addition of the temporal attribute would further give us an in depth idea of the disease burden with respect to forecasting measures. In recent years, new methods developed in the reanalysis were useful for exploring the spatial structure of the data and the impact of spatial autocorrelation on estimates of risk associated with exposure to air pollution. Based on this, our present study aims to explore the spatial and temporal distribution of the lung cancer cases in the Coimbatore district of Tamil Nadu in relation to air pollution risk areas. A spatio temporal moving average method was computed using the CrimeStat software and visualized in ArcGIS 10.1 to document the spatio temporal movement of the disease in the study region. The random walk analysis performed showed the progress of the peak cancer incidences in the intersection regions of the Coimbatore North and South taluks that include major commercial and residential regions like Gandhipuram, Peelamedu, Ganapathy, etc. Our study shows evidence that daily exposure to high air pollutant concentration zones may lead to the risk of lung cancer. The observations from the present study will be useful in delineating high risk zones of environmental exposure that contribute to the increase of cancer among daily commuters. Through our study we suggest that spatially resolved exposure models in relevant time frames will produce higher risks zones rather than solely on statistical theory about the impact of measurement error and the empirical findings.

Keywords: Air Pollution, Cancer, India, spatio-temporal analysis

Procedia PDF Downloads 381