Izeddine Zorkani

Abstracts

2 Hafnium Doped Zno Nanostructures: An Eco-Friendly Synthesis for Optoelectronic Applications

Authors: Mohammed Khenfouch, Izeddine Zorkani, Mohamed Achehboune, Issam Boukhoubza, Bakang Mothudi, Anouar Jorio

Abstract:

Zinc Oxide (ZnO) nanostructures have been attracting growing interest in recent years; their optical and electrical properties make them useful as attractive and promising materials for optoelectronic applications. In this study, pure and Hafnium doped ZnO nanostructures were synthesized using a green processing method. The structural, optical and electrical properties of samples were investigated structural and optical spectroscopies and electrical measurements. The synthesis and chemical composition of pure and Hafnium doped ZnO were confirmed by SEM observation. The XRD studies of Hafnium doped ZnO demonstrate the formation of wurtzite structure with preferred c-axis orientation. Moreover, the optical and electrical properties of doped material have improved after the doping process. The experimental results obtained for our material show that Hf doped ZnO nanostructures could be a promising material in optoelectronic applications such as photovoltaic cell and light emitting diode devices.

Keywords: Nanostructures, Optoelectronic, Green Synthesis, hafnium-doped-zinc oxide

Procedia PDF Downloads 70
1 Microwave Assisted Growth of Varied Phases and Morphologies of Vanadium Oxides Nanostructures: Structural and Optoelectronic Properties

Authors: Mohammed Khenfouch, Malik Maaza, Bakang M. Mothudi, Issam Derkaoui, Izeddine Zorkani, Anouar Jorio

Abstract:

Transition metal oxides nanoparticles with different morphologies have attracted a lot of attention recently owning to their distinctive geometries, and demonstrated promising electrical properties for various applications. In this paper, we discuss the time and annealing effects on the structural and electrical properties of vanadium oxides nanoparticles (VO-NPs) prepared by microwave method. In this sense, transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman Spectroscopy, Ultraviolet-visible absorbance spectra (Uv-Vis) and electrical conductivity were investigated. Hence, the annealing state and the time are two crucial parameters for the improvement of the optoelectronic properties. The use of these nanostructures is promising way for the development of technological applications especially for energy storage devices.

Keywords: Microwave, Electrical Conductivity, optoelectronic properties, Vanadium oxide

Procedia PDF Downloads 48