K. Jafar

Publications

1 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

Authors: A. Ishak, R. Nazar, I. Pop, K. Jafar

Abstract:

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable shrinking sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow and a local heat generation within the boundary layer, with a heat generation rate proportional to (T-T\infty)p Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the stretching/shrinking parameter λ, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value λc whose value depends on the value of M, K, and s. In the presence of internal heat absorption (Q<0)  the surface heat transfer rate decreases with increasing p but increases with parameters Q and s when the sheet is either stretched or shrunk.

Keywords: stagnation point, shrinking sheet, magnetohydrodynamic (MHD), boundary layer flow, UCM fluid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751

Abstracts

1 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

Authors: A. Ishak, R. Nazar, I. Pop, K. Jafar

Abstract:

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk.

Keywords: stagnation point, shrinking sheet, magnetohydrodynamic (MHD), boundary layer flow, UCM fluid

Procedia PDF Downloads 211