A. K. Srivastava

Abstracts

3 Investigation of Mechanical and Tribological Property of Graphene Reinforced SS-316L Matrix Composite Prepared by Selective Laser Melting

Authors: Ajay Mandal, A. K. Srivastava, Jitendar Kumar Tiwari, N. Sathish

Abstract:

A fundamental investigation is performed on the development of graphene (Gr) reinforced stainless steel 316L (SS 316L) metal matrix composite via selective laser melting (SLM) in order to improve specific strength and wear resistance property of SS 316L. Firstly, SS 316L powder and graphene were mixed in a fixed ratio using low energy planetary ball milling. The milled powder is then subjected to the SLM process to fabricate composite samples at a laser power of 320 W and exposure time of 100 µs. The prepared composite was mechanically tested (hardness and tensile test) at ambient temperature, and obtained results indicate that the properties of the composite increased significantly with the addition of 0.2 wt. % Gr. Increment of about 25% (from 194 to 242 HV) and 70% (from 502 to 850 MPa) is obtained in hardness and yield strength of composite, respectively. Raman mapping and XRD were performed to see the distribution of Gr in the matrix and its effect on the formation of carbide, respectively. Results of Raman mapping show the uniform distribution of graphene inside the matrix. Electron back scatter diffraction (EBSD) map of the prepared composite was analyzed under FESEM in order to understand the microstructure and grain orientation. Due to thermal gradient, elongated grains were observed along the building direction, and grains get finer with the addition of Gr. Most of the mechanical components are subjected to several types of wear conditions. Therefore, it is very necessary to improve the wear property of the component, and hence apart from strength and hardness, a tribological property of composite was also measured under dry sliding condition. Solid lubrication property of Gr plays an important role during the sliding process due to which the wear rate of composite reduces up to 58%. Also, the surface roughness of worn surface reduces up to 70% as measured by 3D surface profilometry. Finally, it can be concluded that SLM is an efficient method of fabricating cutting edge metal matrix nano-composite having Gr like reinforcement, which was very difficult to fabricate through conventional manufacturing techniques. Prepared composite has superior mechanical and tribological properties and can be used for a wide variety of engineering applications. However, due to the unavailability of a considerable amount of literature in a similar domain, more experimental works need to perform, such as thermal property analysis, and is a part of ongoing study.

Keywords: Graphene, Composite, Selective Laser Melting, mechanical property, tribological property

Procedia PDF Downloads 1
2 Microstructure and Mechanical Properties Evaluation of Graphene-Reinforced AlSi10Mg Matrix Composite Produced by Powder Bed Fusion Process

Authors: Ajay Mandal, A. K. Srivastava, Jitendar Kumar Tiwari, N. Sathish

Abstract:

Since the last decade, graphene achieved great attention toward the progress of multifunction metal matrix composites, which are highly demanded in industries to develop energy-efficient systems. This study covers the two advanced aspects of the latest scientific endeavor, i.e., graphene as reinforcement in metallic materials and additive manufacturing (AM) as a processing technology. Herein, high-quality graphene and AlSi10Mg powder mechanically mixed by very low energy ball milling with 0.1 wt. % and 0.2 wt. % graphene. Mixed powder directly subjected to the powder bed fusion process, i.e., an AM technique to produce composite samples along with bare counterpart. The effects of graphene on porosity, microstructure, and mechanical properties were examined in this study. The volumetric distribution of pores was observed under X-ray computed tomography (CT). On the basis of relative density measurement by X-ray CT, it was observed that porosity increases after graphene addition, and pore morphology also transformed from spherical pores to enlarged flaky pores due to improper melting of composite powder. Furthermore, the microstructure suggests the grain refinement after graphene addition. The columnar grains were able to cross the melt pool boundaries in case of the bare sample, unlike composite samples. The smaller columnar grains were formed in composites due to heterogeneous nucleation by graphene platelets during solidification. The tensile properties get affected due to induced porosity irrespective of graphene reinforcement. The optimized tensile properties were achieved at 0.1 wt. % graphene. The increment in yield strength and ultimate tensile strength was 22% and 10%, respectively, for 0.1 wt. % graphene reinforced sample in comparison to bare counterpart while elongation decreases 20% for the same sample. The hardness indentations were taken mostly on the solid region in order to avoid the collapse of the pores. The hardness of the composite was increased progressively with graphene content. Around 30% of increment in hardness was achieved after the addition of 0.2 wt. % graphene. Therefore, it can be concluded that powder bed fusion can be adopted as a suitable technique to develop graphene reinforced AlSi10Mg composite. Though, some further process modification required to avoid the induced porosity after the addition of graphene, which can be addressed in future work.

Keywords: Graphene, Hardness, porosity, tensile properties, powder bed fusion

Procedia PDF Downloads 1
1 Application of Space Technology at Cadestral Level and Land Resources Management with Special Reference to Bhoomi Sena Project of Uttar Pradesh, India

Authors: A. K. Srivastava, Sandeep K. Singh, A. K. Kulshetra

Abstract:

Agriculture is the backbone of developing countries of Asian sub-continent like India. Uttar Pradesh is the most populous and fifth largest State of India. Total population of the state is 19.95 crore, which is 16.49% of the country that is more than that of many other countries of the world. Uttar Pradesh occupies only 7.36% of the total area of India. It is a well-established fact that agriculture has virtually been the lifeline of the State’s economy in the past for long and its predominance is likely to continue for a fairly long time in future. The total geographical area of the state is 242.01 lakh hectares, out of which 120.44 lakh hectares is facing various land degradation problems. This needs to be put under various conservation and reclamation measures at much faster pace in order to enhance agriculture productivity in the State. Keeping in view the above scenario Department of Agriculture, Government of Uttar Pradesh has formulated a multi-purpose project namely Bhoomi Sena for the entire state. The main objective of the project is to improve the land degradation using low cost technology available at village level. The total outlay of the project is Rs. 39643.75 Lakhs for an area of about 226000 ha included in the 12th Five Year Plan (2012-13 to 2016-17). It is expected that the total man days would be 310.60 lakh. An attempt has been made to use the space technology like remote sensing, geographical information system, at cadastral level for the overall management of agriculture engineering work which is required for the treatment of degradation of the land. After integration of thematic maps a proposed action plan map has been prepared for the future work.

Keywords: Remote Sensing, GIS, GPS, topographic survey, cadestral mapping

Procedia PDF Downloads 175