Erchin Serpedin

Abstracts

2 Exploring MPI-Based Parallel Computing in Analyzing Very Large Sequences

Authors: Bilal Wajid, Erchin Serpedin

Abstract:

The health industry is aiming towards personalized medicine. If the patient’s genome needs to be sequenced it is important that the entire analysis be completed quickly. This paper explores use of parallel computing to analyze very large sequences. Two cases have been considered. In the first case, the sequence is kept constant and the effect of increasing the number of MPI-based processes is evaluated in terms of execution time, speed and efficiency. In the second case the number of MPI-based processes have been kept constant whereas, the length of the sequence was increased.

Keywords: Parallel Computing, Genome Assembly, alignment

Procedia PDF Downloads 125
1 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion

Authors: Muhammad Ismail, Marwa Qaraqe, Erchin Serpedin

Abstract:

This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.

Keywords: Epilepsy, Detection, neuron, Electroencephalography, eeg, seizure onset

Procedia PDF Downloads 333