Goli Arji

Abstracts

3 A Comparative Study of the Athlete Health Records' Minimum Data Set in Selected Countries and Presenting a Model for Iran

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani, Farzin Halabchi

Abstract:

Background and purpose: The quality of health record depends on the quality of its content and proper documentation. Minimum data set makes a standard method for collecting key data elements that make them easy to understand and enable comparison. The aim of this study was to determine the minimum data set for Iranian athletes’ health records. Methods: This study is an applied research of a descriptive comparative type which was carried out in 2013. By using internal and external forms of documentation, a checklist was created that included data elements of athletes health record and was subjected to debate in Delphi method by experts in the field of sports medicine and health information management. Results: From 97 elements which were subjected to discussion, 85 elements by more than 75 percent of the participants (as the main elements) and 12 elements by 50 to 75 percent of the participants (as the proposed elements) were agreed upon. In about 97 elements of the case, there was no significant difference between responses of alumni groups of sport pathology and sports medicine specialists with medical record, medical informatics and information management professionals. Conclusion: Minimum data set of Iranian athletes’ health record with four information categories including demographic information, health history, assessment and treatment plan was presented. The proposed model is available for manual and electronic medical records.

Keywords: Sports Medicine, documentation, Health record, Minimum data set

Procedia PDF Downloads 292
2 The Effects of Information Technology in Urban Health

Authors: Goli Arji, Safdari Reza, Zahmatkeshan Maryam

Abstract:

Background and Aim: Urban health is one of the challenges of the 21st century. Rapid growth and expanding urbanization have implications for health. In this regard, information technology can remove a large number of modern cities’ problems. Therefore, the present article aims to study modern information technologies in the development of urban health. Materials and Methods:. This is a review article based on library research and Internet searches on valid websites such as Science Direct, Magiran, Springer and advanced searches in Google. Some 164 domestic and foreign texts were studied on such topics as the application of ICT tools including cell phones and wireless tools, GIS, and RFID in the field of urban health in 2011. Finally, 30 sources were used. Conclusion: Information and communication technologies play an important role in improving people's health and enhancing the quality of their lives. Effective utilization of information and communication technologies requires the identification of opportunities and constraints, and the formulation of appropriate planning principles with regard to social and economic factors together with preparing the technological, communication and telecommunications, legal and administrative infrastructures.

Keywords: Information Technology, Technology, Urban Health, Information & Communication

Procedia PDF Downloads 294
1 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: Data Mining, Neural Network, Decision trees, myocardial infarction

Procedia PDF Downloads 313