Muhammad Saqlain

Abstracts

3 Screening of Risk Phenotypes among Metabolic Syndrome Subjects in Adult Pakistani Population

Authors: Muhammad Fiaz, Abid Mahmood, Muhammad Saqlain, S. M. Saqlan Naqvi, Ghazala Kaukab Raja, Rizwan Aziz Qazi

Abstract:

Background: Metabolic Syndrome is a clustering of multiple risk factors including central obesity, hypertension, dyslipidemia and hyperglycemia. These risk phenotypes of metabolic syndrome (MetS) prevalent world-wide, Therefore we aimed to identify the frequency of risk phenotypes among metabolic syndrome subjects in local adult Pakistani population. Methods: Screening of subjects visiting out-patient department of medicine, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad was performed to assess the occurrence of risk phenotypes among MetS subjects in Pakistani population. The Metabolic Syndrome was defined based on International Diabetes Federation (IDF) criteria. Anthropometric and biochemical assay results were recorded. Data was analyzed using SPSS software (16.0). Results: Our results showed that dyslipidemia (31.50%) and hyperglycemia (30.50%) was most population specific risk phenotypes of MetS. The results showed the order of association of metabolic risk phenotypes to MetS as follows hyperglycemia>dyslipidemia>obesity >hypertension. Conclusion: The hyperglycemia and dyslipidemia were found be the major risk phenotypes among the MetS subjects and have greater chances of deceloping MetS among Pakistani Population.

Keywords: Obesity, metabolic syndrome, Dyslipidemia, hypertention

Procedia PDF Downloads 69
2 Heart Failure Identification and Progression by Classifying Cardiac Patients

Authors: Muazzam A. Khan, Muhammad Saqlain, Nazar Abbas Saqib

Abstract:

Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.

Keywords: Data Mining, Heart Failure, Decision Tree, classification model

Procedia PDF Downloads 233
1 Association of Genetic Variants of Apolipoprotein A5 Gene with the Metabolic Syndrome in the Pakistani Population

Authors: Muhammad Fiaz, Muhammad Saqlain, Bernard M. Y. Cheung, S. M. Saqlan Naqvi, Ghazala Kaukab Raja

Abstract:

Background: Association of C allele of rs662799 SNP of APOA5 gene with metabolic syndrome (MetS) has been reported in different populations around the world. A case control study was conducted to explore the relationship of rs662799 variants (T/C) with the MetS and the associated risk phenotypes in a population of Pakistani origin. Methods: MetS was defined according to the IDF criteria. Blood samples were collected from the Pakistan Institute of Medical Sciences, Islamabad, Pakistan for biochemical profiling and DNA extraction. Genotyping of rs662799 was performed using mass ARRAY, iPEX Gold technology. A total of 712 unrelated case and control subjects were genotyped. Data were analyzed using Plink software and SPSS 16.0. Results: The risk allele C of rs662799 showed highly significant association with MetS (OR=1.5, Ρ=0.002). Among risk phenotypes, dyslipidemia, and obesity showed strong association with SNP (OR=1.49, p=0.03; OR =1.46, p=0.01) respectively in models adjusted for age and gender. Conclusion: The rs662799C allele is a significant risk marker for MetS in the local Pakistani population studied. The effect of the SNP is more on dyslipidemia than the other components of the MetS.

Keywords: Obesity, metabolic syndrome, Dyslipidemia, APOA5, rs662799

Procedia PDF Downloads 332