Ling T. Wong

Publications

2 An Application-Based Indoor Environmental Quality (IEQ) Calculator for Residential Buildings

Authors: Kwok W. Mui, Ling T. Wong, Chin T. Cheung, Ho C. Yu

Abstract:

Based on an indoor environmental quality (IEQ) index established by previous work that indicates the overall IEQ acceptance from the prospect of an occupant in residential buildings in terms of four IEQ factors - thermal comfort, indoor air quality, visual and aural comforts, this study develops a user-friendly IEQ calculator for iOS and Android users to calculate the occupant acceptance and compare the relative performance of IEQ in apartments. “IEQ calculator” is easy to use and it preliminarily illustrates the overall indoor environmental quality on the spot. Users simply input indoor parameters such as temperature, number of people and windows are opened or closed for the mobile application to calculate the scores in four areas: the comforts of temperature, brightness, noise and indoor air quality. The calculator allows the prediction of the best IEQ scenario on a quantitative scale. Any indoor environments under the specific IEQ conditions can be benchmarked against the predicted IEQ acceptance range. This calculator can also suggest how to achieve the best IEQ acceptance among a group of residents. 

Keywords: Residential Buildings, calculator, indoor environmental quality (IEQ)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
1 Development of Sustainable Building Environmental Model (SBEM) in Hong Kong

Authors: Kwok W. Mui, Ling T. Wong, F. Xiao, Chin T. Cheung, Ho C. Yu

Abstract:

This study addresses a concept of the Sustainable Building Environmental Model (SBEM) developed to optimize energy consumption in air conditioning and ventilation (ACV) systems without any deterioration of indoor environmental quality (IEQ). The SBEM incorporates two main components: an adaptive comfort temperature control module (ACT) and a new carbon dioxide demand control module (nDCV). These two modules take an innovative approach to maintain satisfaction of the Indoor Environmental Quality (IEQ) with optimum energy consumption; they provide a rational basis of effective control. A total of 2133 sets of measurement data of indoor air temperature (Ta), relative humidity (Rh) and carbon dioxide concentration (CO2) were conducted in some Hong Kong offices to investigate the potential of integrating the SBEM. A simulation was used to evaluate the dynamic performance of the energy and air conditioning system with the integration of the SBEM in an air-conditioned building. It allows us make a clear picture of the control strategies and performed any pre-tuned of controllers before utilized in real systems. With the integration of SBEM, it was able to save up to 12.3% in simulation of overall electricity consumption, and maintain the average carbon dioxide concentration within 1000ppm and occupant dissatisfaction in 20%. 

Keywords: Energy Saving, adaptive comfort temperature (ACT), —Sustainable building environmental model (SBEM), new demand control ventilation (nDCV)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542

Abstracts

5 A Hybrid Simulation Approach to Evaluate Cooling Energy Consumption for Public Housings of Subtropics

Authors: Kwok W. Mui, Ling T. Wong, Chi T. Cheung

Abstract:

Cooling energy consumption in the residential sector, different from shopping mall, office or commercial buildings, is significantly subject to occupant decisions where in-depth investigations are found limited. It shows that energy consumptions could be associated with housing types. Surveys have been conducted in existing Hong Kong public housings to understand the housing characteristics, apartment electricity demands, occupant’s thermal expectations, and air–conditioning usage patterns for further cooling energy-saving assessments. The aim of this study is to develop a hybrid cooling energy prediction model, which integrated by EnergyPlus (EP) and artificial neural network (ANN) to estimate cooling energy consumption in public residential sector. Sensitivity tests are conducted to find out the energy impacts with changing building parameters regarding to external wall and window material selection, window size reduction, shading extension, building orientation and apartment size control respectively. Assessments are performed to investigate the relationships between cooling demands and occupant behavior on thermal environment criteria and air-conditioning operation patterns. The results are summarized into a cooling energy calculator for layman use to enhance the cooling energy saving awareness in their own living environment. The findings can be used as a directory framework for future cooling energy evaluation in residential buildings, especially focus on the occupant behavioral air–conditioning operation and criteria of energy-saving incentives.

Keywords: Residential Buildings, Artificial Neural Network, thermal environment, occupant behavior, cooling energy

Procedia PDF Downloads 42
4 Implementing of Indoor Air Quality Index in Hong Kong

Authors: Kwok W. Mui, Ling T. Wong, Tsz W. Tsang

Abstract:

Many Hong Kong people nowadays spend most of their lifetime working indoor. Since poor Indoor Air Quality (IAQ) potentially leads to discomfort, ill health, low productivity and even absenteeism in workplaces, a call for establishing statutory IAQ control to safeguard the well-being of residents is urgently required. Although policies, strategies, and guidelines for workplace IAQ diagnosis have been developed elsewhere and followed with remedial works, some of those workplaces or buildings have relatively late stage of the IAQ problems when the investigation or remedial work started. Screening for IAQ problems should be initiated as it will provide information as a minimum provision of IAQ baseline requisite to the resolution of the problems. It is not practical to sample all air pollutants that exit. Nevertheless, as a statutory control, reliable, rapid screening is essential in accordance with a compromise strategy, which balances costs against detection of key pollutants. This study investigates the feasibility of using an IAQ index as a parameter of IAQ control in Hong Kong. The index is a screening parameter to identify the unsatisfactory workplace IAQ and will highlight where a fully effective IAQ monitoring and assessment is needed for an intensive diagnosis. There already exist a number of representative common indoor pollutants based on some extensive IAQ assessments. The selection of pollutants is surrogate to IAQ control consists of dilution, mitigation, and emission control. The IAQ Index and assessment will look at high fractional quantities of these common measurement parameters. With the support of the existing comprehensive regional IAQ database and the IAQ Index by the research team as the pre-assessment probability, and the unsatisfactory IAQ prevalence as the post-assessment probability from this study, thresholds of maintaining the current measures and performing a further IAQ test or IAQ remedial measures will be proposed. With justified resources, the proposed IAQ Index and assessment protocol might be a useful tool for setting up a practical public IAQ surveillance programme and policy in Hong Kong.

Keywords: Assessment, Indoor Air Quality, index, surveillance programme

Procedia PDF Downloads 140
3 Environmental Parameters Influence on Chronic Obstructive Pulmonary Disease (COPD) Patients’ Quality of Life

Authors: Kwok W. Mui, Ling T. Wong, Nai K. K. Fong

Abstract:

Chronic obstructive pulmonary disease (COPD) is the fifth leading cause of death in Hong Kong. Investigators are eager to explore the environmental risk factors for COPD such as air pollution and occupational exposure. Through a cross-sectional survey, this study investigates the impact of air quality to the quality of life of patients with the COPD in terms of the scores of the (Chinese) chronic respiratory questionnaire (CCRQ) and the measurements of indoor air quality (IAQ) and Moser’s activities of daily living (ADL). Strong relationships between a number of indoor/outdoor environmental parameters were found and CRQ sub-scores for patients of COPD and thus indoor air pollutants must be monitored for future studies related to QOL for patients with COPD.

Keywords: Quality of Life, chronic obstructive pulmonary disease (COPD), indoor air pollutants, chronic respiratory questionnaire (CRQ)

Procedia PDF Downloads 247
2 Development of Sustainable Building Environmental Model (SBEM) in Hong Kong

Authors: Kwok W. Mui, Ling T. Wong, F. Xiao, Chin T. Cheung, Ho C. Yu

Abstract:

This study addresses a concept of the Sustainable Building Environmental Model (SBEM) developed to optimize energy consumption in air conditioning and ventilation (ACV) systems without any deterioration of indoor environmental quality (IEQ). The SBEM incorporates two main components: an adaptive comfort temperature control module (ACT) and a new carbon dioxide demand control module (nDCV). These two modules take an innovative approach to maintain satisfaction of the Indoor Environmental Quality (IEQ) with optimum energy consumption, they provide a rational basis of effective control. A total of 2133 sets of measurement data of indoor air temperature (Ta), relative humidity (Rh) and carbon dioxide concentration (CO2) were conducted in some Hong Kong offices to investigate the potential of integrating the SBEM. A simulation was used to evaluate the dynamic performance of the energy and air conditioning system with the integration of the SBEM in an air-conditioned building. It allows us make a clear picture of the control strategies and performed any pre-tuned of controllers before utilized in real systems. With the integration of SBEM, it was able to save up to 12.3% in simulation and 15% in field measurement of overall electricity consumption, and maintain the average carbon dioxide concentration within 1000ppm and occupant dissatisfaction in 20%.

Keywords: Energy Saving, sustainable building environmental model (SBEM), adaptive comfort temperature (ACT), new demand control ventilation (nDCV)

Procedia PDF Downloads 511
1 An Application-Based Indoor Environmental Quality (IEQ) Calculator for Residential Buildings

Authors: Kwok W. Mui, Ling T. Wong, Chin T. Cheung, Ho C. Yu

Abstract:

Based on an indoor environmental quality (IEQ) index established by previous work that indicates the overall IEQ acceptance from the prospect of an occupant in residential buildings in terms of four IEQ factors - thermal comfort, indoor air quality, visual and aural comforts, this study develops a user-friendly IEQ calculator for iOS and Android users to calculate the occupant acceptance and compare the relative performance of IEQ in apartments. The calculator allows the prediction of the best IEQ scenario on a quantitative scale. Any indoor environments under the specific IEQ conditions can be benchmarked against the predicted IEQ acceptance range. This calculator can also suggest how to achieve the best IEQ acceptance among a group of residents.

Keywords: Residential Buildings, calculator, indoor environmental quality (IEQ)

Procedia PDF Downloads 291