H. C. Chang

Publications

5 Using TRACE, PARCS, and SNAP Codes to Analyze the Load Rejection Transient of ABWR

Authors: A. L. Ho, J. R. Wang, H. C. Chang, C. Shih, S. W. Chen, J. H. Yang

Abstract:

The purpose of the study is to analyze the load rejection transient of ABWR by using TRACE, PARCS, and SNAP codes. This study has some steps. First, using TRACE, PARCS, and SNAP codes establish the model of ABWR. Second, the key parameters are identified to refine the TRACE/PARCS/SNAP model further in the frame of a steady state analysis. Third, the TRACE/PARCS/SNAP model is used to perform the load rejection transient analysis. Finally, the FSAR data are used to compare with the analysis results. The results of TRACE/PARCS are consistent with the FSAR data for the important parameters. It indicates that the TRACE/PARCS/SNAP model of ABWR has a good accuracy in the load rejection transient.

Keywords: TRACE, ABWR, PARCS, SNAP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 325
4 The Main Steamline Break Transient Analysis for Advanced Boiling Water Reactor Using TRACE, PARCS, and SNAP Codes

Authors: A. L. Ho, J. R. Wang, H. C. Chang, C. Shih, S. W. Chen, J. H. Yang, L. C. Wang

Abstract:

To confirm the reactor and containment integrity of the Advanced Boiling Water Reactor (ABWR), we perform the analysis of main steamline break (MSLB) transient by using the TRACE, PARCS, and SNAP codes. The process of the research has four steps. First, the ABWR nuclear power plant (NPP) model is developed by using the above codes. Second, the steady state analysis is performed by using this model. Third, the ABWR model is used to run the analysis of MSLB transient. Fourth, the predictions of TRACE and PARCS are compared with the data of FSAR. The results of TRACE/PARCS and FSAR are similar. According to the TRACE/PARCS results, the reactor and containment integrity of ABWR can be maintained in a safe condition for MSLB.

Keywords: TRACE, ABWR, PARCS, SNAP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 288
3 The Establishment of RELAP5/SNAP Model for Kuosheng Nuclear Power Plant

Authors: J. R. Wang, H. C. Chang, C. Shih, S. W. Chen, S. C. Chiang, T. Y. Yu

Abstract:

After the measurement uncertainty recapture (MUR) power uprates, Kuosheng nuclear power plant (NPP) was uprated the power from 2894 MWt to 2943 MWt. For power upgrade, several codes (e.g., TRACE, RELAP5, etc.) were applied to assess the safety of Kuosheng NPP. Hence, the main work of this research is to establish a RELAP5/MOD3.3 model of Kuosheng NPP with SNAP interface. The establishment of RELAP5/SNAP model was referred to the FSAR, training documents, and TRACE model which has been developed and verified before. After completing the model establishment, the startup test scenarios would be applied to the RELAP5/SNAP model. With comparing the startup test data and TRACE analysis results, the applicability of RELAP5/SNAP model would be assessed.

Keywords: TRACE, RELAP5, BWR, SNAP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
2 The Establishment and Application of TRACE/FRAPTRAN Model for Kuosheng Nuclear Power Plant

Authors: H. T. Lin, J. R. Wang, H. C. Chang, W. K. Lin, W. Y. Li, C. Shih, S. W. Chen

Abstract:

Kuosheng nuclear power plant (NPP) is a BWR/6 type NPP and located on the northern coast of Taiwan. First, Kuosheng NPP TRACE model were developed in this research. In order to assess the system response of Kuosheng NPP TRACE model, startup tests data were used to evaluate Kuosheng NPP TRACE model. Second, the overpressurization transient analysis of Kuosheng NPP TRACE model was performed. Besides, in order to confirm the mechanical property and integrity of fuel rods, FRAPTRAN analysis was also performed in this study.

Keywords: Safety Analysis, FRAPTRAN, TRACE, BWR/6

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
1 Turbine Trip without Bypass Analysis of Kuosheng Nuclear Power Plant Using TRACE Coupling with FRAPTRAN

Authors: H. T. Lin, J. R. Wang, H. C. Chang, W. K. Lin, W. Y. Li, C. Shih

Abstract:

This analysis of Kuosheng nuclear power plant (NPP) was performed mainly by TRACE, assisted with FRAPTRAN and FRAPCON. SNAP v2.2.1 and TRACE v5.0p3 are used to develop the Kuosheng NPP SPU TRACE model which can simulate the turbine trip without bypass transient. From the analysis of TRACE, the important parameters such as dome pressure, coolant temperature and pressure can be determined. Through these parameters, comparing with the criteria which were formulated by United States Nuclear Regulatory Commission (U.S. NRC), we can determine whether the Kuoshengnuclear power plant failed or not in the accident analysis. However, from the data of TRACE, the fuel rods status cannot be determined. With the information from TRACE and burn-up analysis obtained from FRAPCON, FRAPTRAN analyzes more details about the fuel rods in this transient. Besides, through the SNAP interface, the data results can be presented as an animation. From the animation, the TRACE and FRAPTRAN data can be merged together that may be realized by the readers more easily. In this research, TRACE showed that the maximum dome pressure of the reactor reaches to 8.32 MPa, which is lower than the acceptance limit 9.58 MPa. Furthermore, FRAPTRAN revels that the maximum strain is about 0.00165, which is below the criteria 0.01. In addition, cladding enthalpy is 52.44 cal/g which is lower than 170 cal/g specified by the USNRC NUREG-0800 Standard Review Plan.

Keywords: FRAPTRAN, TRACE, Turbine trip without bypass, Kuosheng NPP, SNAP animation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123

Abstracts

4 Using TRACE, PARCS, and SNAP Codes to Analyze the Load Rejection Transient of ABWR

Authors: A. L. Ho, J. R. Wang, H. C. Chang, C. Shih, S. W. Chen, J. H. Yang

Abstract:

The purpose of the study is to analyze the load rejection transient of ABWR by using TRACE, PARCS, and SNAP codes. This study has some steps. First, using TRACE, PARCS, and SNAP codes establish the model of ABWR. Second, the key parameters are identified to refine the TRACE/PARCS/SNAP model further in the frame of a steady state analysis. Third, the TRACE/PARCS/SNAP model is used to perform the load rejection transient analysis. Finally, the FSAR data are used to compare with the analysis results. The results of TRACE/PARCS are consistent with the FSAR data for the important parameters. It indicates that the TRACE/PARCS/SNAP model of ABWR has a good accuracy in the load rejection transient.

Keywords: TRACE, ABWR, PARCS, SNAP

Procedia PDF Downloads 22
3 The Main Steamline Break Transient Analysis for Advanced Boiling Water Reactor Using TRACE, PARCS, and SNAP Codes

Authors: A. L. Ho, J. R. Wang, H. C. Chang, C. Shih, S. W. Chen, J. H. Yang, L. C. Wang

Abstract:

To confirm the reactor and containment integrity of the Advanced Boiling Water Reactor (ABWR), we perform the analysis of main steamline break (MSLB) transient by using the TRACE, PARCS, and SNAP codes. The process of the research has four steps. First, the ABWR nuclear power plant (NPP) model is developed by using the above codes. Second, the steady state analysis is performed by using this model. Third, the ABWR model is used to run the analysis of MSLB transient. Fourth, the predictions of TRACE and PARCS are compared with the data of FSAR. The results of TRACE/PARCS and FSAR are similar. According to the TRACE/PARCS results, the reactor and containment integrity of ABWR can be maintained in a safe condition for MSLB.

Keywords: TRACE, PARCS, SNAP, advanced boiling water reactor

Procedia PDF Downloads 55
2 The Establishment of RELAP5/SNAP Model for Kuosheng Nuclear Power Plant

Authors: J. R. Wang, H. C. Chang, C. Shih, S. W. Chen, S. C. Chiang, T. Y. Yu

Abstract:

After the measurement uncertainty recapture (MUR) power uprates, Kuosheng nuclear power plant (NPP) was uprated the power from 2894 MWt to 2943 MWt. For power upgrade, several codes (e.g., TRACE, RELAP5, etc.) were applied to assess the safety of Kuosheng NPP. Hence, the main work of this research is to establish a RELAP5/MOD3.3 model of Kuosheng NPP with SNAP interface. The establishment of RELAP5/SNAP model was referred to the FSAR, training documents, and TRACE model which has been developed and verified before. After completing the model establishment, the startup test scenarios would be applied to the RELAP5/SNAP model. With comparing the startup test data and TRACE analysis results, the applicability of RELAP5/SNAP model would be assessed.

Keywords: TRACE, RELAP5, BWR, SNAP

Procedia PDF Downloads 260
1 The Establishment and Application of TRACE/FRAPTRAN Model for Kuosheng Nuclear Power Plant

Authors: H. T. Lin, J. R. Wang, H. C. Chang, W. K. Lin, W. Y. Li, C. Shih, S. W. Chen

Abstract:

Kuosheng nuclear power plant (NPP) is a BWR/6 type NPP and located on the northern coast of Taiwan. First, Kuosheng NPP TRACE model were developed in this research. In order to assess the system response of Kuosheng NPP TRACE model, startup tests data were used to evaluate Kuosheng NPP TRACE model. Second, the over pressurization transient analysis of Kuosheng NPP TRACE model was performed. Besides, in order to confirm the mechanical property and integrity of fuel rods, FRAPTRAN analysis was also performed in this study.

Keywords: Safety Analysis, TRACE, BWR/6, FRAPTRA

Procedia PDF Downloads 408