Kai-Cheng Hsu


1 Fuzzy Optimization in Metabolic Systems

Authors: Feng-Sheng Wang, Wu-Hsiung Wu, Kai-Cheng Hsu


The optimization of biological systems, which is a branch of metabolic engineering, has generated a lot of industrial and academic interest for a long time. In the last decade, metabolic engineering approaches based on mathematical optimizations have been used extensively for the analysis and manipulation of metabolic networks. In practical optimization of metabolic reaction networks, designers have to manage the nature of uncertainty resulting from qualitative characters of metabolic reactions, e.g., the possibility of enzyme effects. A deterministic approach does not give an adequate representation for metabolic reaction networks with uncertain characters. Fuzzy optimization formulations can be applied to cope with this problem. A fuzzy multi-objective optimization problem can be introduced for finding the optimal engineering interventions on metabolic network systems considering the resilience phenomenon and cell viability constraints. The accuracy of optimization results depends heavily on the development of essential kinetic models of metabolic networks. Kinetic models can quantitatively capture the experimentally observed regulation data of metabolic systems and are often used to find the optimal manipulation of external inputs. To address the issues of optimizing the regulatory structure of metabolic networks, it is necessary to consider qualitative effects, e.g., the resilience phenomena and cell viability constraints. Combining the qualitative and quantitative descriptions for metabolic networks makes it possible to design a viable strain and accurately predict the maximum possible flux rates of desired products. Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. Two case studies will present in the conference to illustrate the phenomena.

Keywords: Metabolic Engineering, kinetic model, Fuzzy multi-objective optimization problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536


1 Discovery of New Inhibitors for Colorectal Cancer Treatment

Authors: Kai-Cheng Hsu, Tzu-Ying Sung, Jinn-Moon Yang


Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Although several drugs have been developed to treat colorectal cancer, such as Regorafenib and 5-FU, their efficacy is often limited by the development of drug resistance. Therefore, development of new drugs with new scaffolds is necessary to treat CRC. Here, we used site-moiety maps to identify inhibitors against PIM1, LIMK1, SRC, and mTOR, which are often overexpressed in CRC. A site-moiety map represents physicochemical properties and moiety preferences of a binding site through anchors. An anchor contains three elements: (1) conserved interacting residues of a binding pocket; (2) moiety preference of the binding pocket; and (3) the type (e.g., hydrogen-bonding or van der Waals interactions) of interaction between the moieties and the binding pocket. Then, we performed a structure-based virtual screening of ~260,000 compounds and selected compound candidates with high site-moiety map scores for bioassays. Among these candidates, compound 1 and compound 2 inhibited the growth of CRC cells with IC50 values of <10 μM. The experimental result of enzyme-based assays indicated that compound 1 is a dual inhibitor against PIM1 (IC50 6 μM) and LIMK1(IC50 11 μM). Compound 2 was predicted as a SRC inhibitor and will be further validated. The compounds inhibited different protein targets compared to the current drugs. We believe that the compounds provide a starting point to design new drugs for CRC treatment.

Keywords: Drug discovery, colorectal cancer, virtual screening, site-moiety map, PIM1, LIMK1

Procedia PDF Downloads 131