M. Bharath

Publications

1 Experimental Study on Effects of Addition of Rice Husk on Coal Gasification

Authors: Vasudevan Raghavan, B. V. S. S. S. Prasad, M. Bharath, S. R. Chakravarthy

Abstract:

In this experimental study, effects of addition of rice husk on coal gasification in a bubbling fluidized bed gasifier, operating at atmospheric pressure with air as gasifying agent, are reported. Rice husks comprising of 6.5% and 13% by mass are added to coal. Results show that, when rice husk is added the methane yield increases from volumetric percentage of 0.56% (with no rice husk) to 2.77% (with 13% rice husk). CO and H2 remain almost unchanged and CO2 decreases with addition of rice husk. The calorific value of the synthetic gas is around 2.73 MJ/Nm3. All performance indices, such as cold gas efficiency and carbon conversion, increase with addition of rice husk.

Keywords: Coal Gasification, calorific value, rice husk, bubbling fluidized bed reactor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 444

Abstracts

2 Experimental Study on Effects of Addition of Rice Husk on Coal Gasification

Authors: Vasudevan Raghavan, B. V. S. S. S. Prasad, M. Bharath, S. R. Chakravarthy

Abstract:

In this experimental study, effects of addition of rice husk on coal gasification in a bubbling fluidized bed gasifier, operating at atmospheric pressure with air as gasifying agent, are reported. Rice husks comprising of 6.5% and 13% by mass are added to coal. Results show that, when rice husk is added the methane yield increases from volumetric percentage of 0.56% (with no rice husk) to 2.77% (with 13% rice husk). CO and H2 remain almost unchanged and CO2 decreases with addition of rice husk. The calorific value of the synthetic gas is around 2.73 MJ/Nm3. All performance indices, such as cold gas efficiency and carbon conversion, increase with addition of rice husk.

Keywords: Coal Gasification, calorific value, rice husk, bubbling fluidized bed reactor

Procedia PDF Downloads 44
1 Comparative Study of Stone Column with and without Encasement Using Waste Aggregate

Authors: M. Bharath, V. K. Stalin, M. Kirithika, V. Paneerselvam

Abstract:

In developing countries like India due to the rapid urbanization, large amount of waste materials are produced every year. These waste materials can be utilized in the improvement of problematic soils. Stone column is one of the best methods to improve soft clay deposits. In this study, load tests were conducted to ensure the suitability of waste as column materials. The variable parameters studied are material, number of column and encasement. The materials used for the study are stone aggregate, copper slag, construction waste, for one, two and three number of columns with geotextile and geogrid encasement. It was found that the performance of waste as column material are comparable to that of conventional stone column with and without encasement. Hence, it is concluded that the copper slag and construction waste may be used as a column material in place of conventional stone aggregate to improve the soft clay advantage being utilization of waste.

Keywords: Construction Waste, copper slag, stone column, geocomposite

Procedia PDF Downloads 216