John R. Rose

Publications

2 An Information Theoretic Approach to Rescoring Peptides Produced by De Novo Peptide Sequencing

Authors: John R. Rose, James P. Cleveland, Alvin Fox

Abstract:

Tandem mass spectrometry (MS/MS) is the engine driving high-throughput protein identification. Protein mixtures possibly representing thousands of proteins from multiple species are treated with proteolytic enzymes, cutting the proteins into smaller peptides that are then analyzed generating MS/MS spectra. The task of determining the identity of the peptide from its spectrum is currently the weak point in the process. Current approaches to de novo sequencing are able to compute candidate peptides efficiently. The problem lies in the limitations of current scoring functions. In this paper we introduce the concept of proteome signature. By examining proteins and compiling proteome signatures (amino acid usage) it is possible to characterize likely combinations of amino acids and better distinguish between candidate peptides. Our results strongly support the hypothesis that a scoring function that considers amino acid usage patterns is better able to distinguish between candidate peptides. This in turn leads to higher accuracy in peptide prediction.

Keywords: Proteomics, scoring, Peptide, tandem mass spectrometry, mutual information, De Novo

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
1 MIM: A Species Independent Approach for Classifying Coding and Non-Coding DNA Sequences in Bacterial and Archaeal Genomes

Authors: Achraf El Allali, John R. Rose

Abstract:

A number of competing methodologies have been developed to identify genes and classify DNA sequences into coding and non-coding sequences. This classification process is fundamental in gene finding and gene annotation tools and is one of the most challenging tasks in bioinformatics and computational biology. An information theory measure based on mutual information has shown good accuracy in classifying DNA sequences into coding and noncoding. In this paper we describe a species independent iterative approach that distinguishes coding from non-coding sequences using the mutual information measure (MIM). A set of sixty prokaryotes is used to extract universal training data. To facilitate comparisons with the published results of other researchers, a test set of 51 bacterial and archaeal genomes was used to evaluate MIM. These results demonstrate that MIM produces superior results while remaining species independent.

Keywords: Entropy, mutual information, Coding Non-coding Classification, GeneRecognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404