Victor Chang

Publications

1 Modeling Decentralized Source-Separation Systems for Urban Waste Management

Authors: Bernard J.H. Ng, Apostolos Giannis, Victor Chang, Rainer Stegmann, Jing-Yuan Wang

Abstract:

Decentralized eco-sanitation system is a promising and sustainable mode comparing to the century-old centralized conventional sanitation system. The decentralized concept relies on an environmentally and economically sound management of water, nutrient and energy fluxes. Source-separation systems for urban waste management collect different solid waste and wastewater streams separately to facilitate the recovery of valuable resources from wastewater (energy, nutrients). A resource recovery centre constituted for 20,000 people will act as the functional unit for the treatment of urban waste of a high-density population community, like Singapore. The decentralized system includes urine treatment, faeces and food waste co-digestion, and horticultural waste and organic fraction of municipal solid waste treatment in composting plants. A design model is developed to estimate the input and output in terms of materials and energy. The inputs of urine (yellow water, YW) and faeces (brown water, BW) are calculated by considering the daily mean production of urine and faeces by humans and the water consumption of no-mix vacuum toilet (0.2 and 1 L flushing water for urine and faeces, respectively). The food waste (FW) production is estimated to be 150 g wet weight/person/day. The YW is collected and discharged by gravity into tank. It was found that two days are required for urine hydrolysis and struvite precipitation. The maximum nitrogen (N) and phosphorus (P) recovery are 150-266 kg/day and 20-70 kg/day, respectively. In contrast, BW and FW are mixed for co-digestion in a thermophilic acidification tank and later a decentralized/centralized methanogenic reactor is used for biogas production. It is determined that 6.16-15.67 m3/h methane is produced which is equivalent to 0.07-0.19 kWh/ca/day. The digestion residues are treated with horticultural waste and organic fraction of municipal waste in co-composting plants.

Keywords: Decentralization, Ecological Sanitation, material flow analysis, source-separation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557

Abstracts

1 Factors Affecting the Adoption of Cloud Business Intelligence among Healthcare Sector: A Case Study of Saudi Arabia

Authors: Victor Chang, Muthu Ramachandran, Raed Alsufyani, Hissam Tawfik

Abstract:

This study investigates the factors that influence the decision by players in the healthcare sector to embrace Cloud Business Intelligence Technology with a focus on healthcare organizations in Saudi Arabia. To bring this matter into perspective, this study primarily considers the Technology-Organization-Environment (TOE) framework and the Human Organization-Technology (HOT) fit model. A survey was hypothetically designed based on literature review and was carried out online. Quantitative data obtained was processed from descriptive and one-way frequency statistics to inferential and regression analysis. Data were analysed to establish factors that influence the decision to adopt Cloud Business intelligence technology in the healthcare sector. The implication of the identified factors was measured, and all assumptions were tested. 66.70% of participants in healthcare organization backed the intention to adopt cloud business intelligence system. 99.4% of these participants considered security concerns and privacy risk have been the most significant factors in the adoption of cloud Business Intelligence (CBI) system. Through regression analysis hypothesis testing point that usefulness, service quality, relative advantage, IT infrastructure preparedness, organization structure; vendor support, perceived technical competence, government support, and top management support positively and significantly influence the adoption of (CBI) system. The paper presents quantitative phase that is a part of an on-going project. The project will be based on the consequences learned from this study.

Keywords: Business Intelligence, Cloud Computing, HOT-fit model, TOE, healthcare and innovation adoption

Procedia PDF Downloads 40