Hacer Özden
Publications
1 The Number of Rational Points on Elliptic Curves y2 = x3 + b2 Over Finite Fields
Authors: Betül Gezer, Hacer Özden, Ahmet Tekcan, Osman Bizim
Abstract:
Let p be a prime number, Fpbe a finite field and let Qpdenote the set of quadratic residues in Fp. In the first section we givesome notations and preliminaries from elliptic curves. In the secondsection, we consider some properties of rational points on ellipticcurves Ep,b: y2= x3+ b2 over Fp, where b ∈ F*p. Recall that theorder of Ep,bover Fpis p + 1 if p ≡ 5(mod 6). We generalize thisresult to any field Fnp for an integer n≥ 2. Further we obtain someresults concerning the sum Σ[x]Ep,b(Fp) and Σ[y]Ep,b(Fp), thesum of x- and y- coordinates of all points (x, y) on Ep,b, and alsothe the sum Σ(x,0)Ep,b(Fp), the sum of points (x, 0) on Ep,b.
Keywords: Elliptic curves over finite fields, rational points on elliptic curves
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554