Yasser M. Kadah

Publications

4 Identification of Cardiac Arrhythmias using Natural Resonance Complex Frequencies

Authors: Yasser M. Kadah, Moustafa A. Bani-Hasan, Fatma M. El-Hefnawi

Abstract:

An electrocardiogram (ECG) feature extraction system based on the calculation of the complex resonance frequency employing Prony-s method is developed. Prony-s method is applied on five different classes of ECG signals- arrhythmia as a finite sum of exponentials depending on the signal-s poles and the resonant complex frequencies. Those poles and resonance frequencies of the ECG signals- arrhythmia are evaluated for a large number of each arrhythmia. The ECG signals of lead II (ML II) were taken from MIT-BIH database for five different types. These are the ventricular couplet (VC), ventricular tachycardia (VT), ventricular bigeminy (VB), and ventricular fibrillation (VF) and the normal (NR). This novel method can be extended to any number of arrhythmias. Different classification techniques were tried using neural networks (NN), K nearest neighbor (KNN), linear discriminant analysis (LDA) and multi-class support vector machine (MC-SVM).

Keywords: electrocardiogram, statistical classifiers, FeatureExtraction, Arrhythmias analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
3 Eukaryotic Gene Prediction by an Investigation of Nonlinear Dynamical Modeling Techniques on EIIP Coded Sequences

Authors: Nahed H. Solouma, Yasser M. Kadah, Mai S. Mabrouk, Abou-Bakr M. Youssef

Abstract:

Many digital signal processing, techniques have been used to automatically distinguish protein coding regions (exons) from non-coding regions (introns) in DNA sequences. In this work, we have characterized these sequences according to their nonlinear dynamical features such as moment invariants, correlation dimension, and largest Lyapunov exponent estimates. We have applied our model to a number of real sequences encoded into a time series using EIIP sequence indicators. In order to discriminate between coding and non coding DNA regions, the phase space trajectory was first reconstructed for coding and non-coding regions. Nonlinear dynamical features are extracted from those regions and used to investigate a difference between them. Our results indicate that the nonlinear dynamical characteristics have yielded significant differences between coding (CR) and non-coding regions (NCR) in DNA sequences. Finally, the classifier is tested on real genes where coding and non-coding regions are well known.

Keywords: Nonlinear Dynamics, Lyapunov exponent, correlation dimension, Gene prediction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
2 PIELG: A Protein Interaction Extraction Systemusing a Link Grammar Parser from Biomedical Abstracts

Authors: Rania A. Abul Seoud, Nahed H. Solouma, Abou-Baker M. Youssef, Yasser M. Kadah

Abstract:

Due to the ever growing amount of publications about protein-protein interactions, information extraction from text is increasingly recognized as one of crucial technologies in bioinformatics. This paper presents a Protein Interaction Extraction System using a Link Grammar Parser from biomedical abstracts (PIELG). PIELG uses linkage given by the Link Grammar Parser to start a case based analysis of contents of various syntactic roles as well as their linguistically significant and meaningful combinations. The system uses phrasal-prepositional verbs patterns to overcome preposition combinations problems. The recall and precision are 74.4% and 62.65%, respectively. Experimental evaluations with two other state-of-the-art extraction systems indicate that PIELG system achieves better performance. For further evaluation, the system is augmented with a graphical package (Cytoscape) for extracting protein interaction information from sequence databases. The result shows that the performance is remarkably promising.

Keywords: natural language processing, Protein-Protein Interaction, Link Grammar Parser, Interaction extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
1 Optimal Design of Selective Excitation Pulses in Magnetic Resonance Imaging using Genetic Algorithms

Authors: Yasser M. Kadah, Abou-Bakr M. Youssef, Mohammed A. Alolfe

Abstract:

The proper design of RF pulses in magnetic resonance imaging (MRI) has a direct impact on the quality of acquired images, and is needed for many applications. Several techniques have been proposed to obtain the RF pulse envelope given the desired slice profile. Unfortunately, these techniques do not take into account the limitations of practical implementation such as limited amplitude resolution. Moreover, implementing constraints for special RF pulses on most techniques is not possible. In this work, we propose to develop an approach for designing optimal RF pulses under theoretically any constraints. The new technique will pose the RF pulse design problem as a combinatorial optimization problem and uses efficient techniques from this area such as genetic algorithms (GA) to solve this problem. In particular, an objective function will be proposed as the norm of the difference between the desired profile and the one obtained from solving the Bloch equations for the current RF pulse design values. The proposed approach will be verified using analytical solution based RF simulations and compared to previous methods such as Shinnar-Le Roux (SLR) method, and analysis, selected, and tested the options and parameters that control the Genetic Algorithm (GA) can significantly affect its performance to get the best improved results and compared to previous works in this field. The results show a significant improvement over conventional design techniques, select the best options and parameters for GA to get most improvement over the previous works, and suggest the practicality of using of the new technique for most important applications as slice selection for large flip angles, in the area of unconventional spatial encoding, and another clinical use.

Keywords: combinatorial optimization, Magnetic resonance imaging, Selective excitation, pulse design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351