Gül Tekin Temur

Publications

3 DEA ANN Approach in Supplier Evaluation System

Authors: Dilek Özdemir, Gül Tekin Temur

Abstract:

In Supply Chain Management (SCM), strengthening partnerships with suppliers is a significant factor for enhancing competitiveness. Hence, firms increasingly emphasize supplier evaluation processes. Supplier evaluation systems are basically developed in terms of criteria such as quality, cost, delivery, and flexibility. Because there are many variables to be analyzed, this process becomes hard to execute and needs expertise. On this account, this study aims to develop an expert system on supplier evaluation process by designing Artificial Neural Network (ANN) that is supported with Data Envelopment Analysis (DEA). The methods are applied on the data of 24 suppliers, which have longterm relationships with a medium sized company from German Iron and Steel Industry. The data of suppliers consists of variables such as material quality (MQ), discount of amount (DOA), discount of cash (DOC), payment term (PT), delivery time (DT) and annual revenue (AR). Meanwhile, the efficiency that is generated by using DEA is added to the supplier evaluation system in order to use them as system outputs.

Keywords: artificial neural network (ANN), DataEnvelopment Analysis (DEA), Supplier Evaluation System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
2 Determining the Principles Affecting Perceptions of Strategic Quality Management Implementation: A Study of the Turkish Large Scale Firms

Authors: Gül Tekin Temur, Tolga Kaya, Serpil Öktem, Sıtkı Gözlü

Abstract:

The purpose of this study is to reveal the principles, which have the highest impact on determining the Strategic Quality Management (SQM) implementation perceptions of managers. In order to accomplish this goal, first of all, a factor analysis is conducted on the attitudes of managers at 80 large-scale firms in Turkey for SQM principles. Secondly, utilizing t tests and discriminant analysis, the most effective items are determined. The results show that “process improvement" and “assessment of competitiveness" are the management principles, which have the highest impact on determining the SQM implementation perceptions of Turkish managers.

Keywords: Process Improvement, Assessment of Competitiveness, Strategic Quality Management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
1 The Use of Artificial Neural Network in Option Pricing: The Case of S and P 100 Index Options

Authors: Gül Tekin Temur, Zeynep İltüzer Samur

Abstract:

Due to the increasing and varying risks that economic units face with, derivative instruments gain substantial importance, and trading volumes of derivatives have reached very significant level. Parallel with these high trading volumes, researchers have developed many different models. Some are parametric, some are nonparametric. In this study, the aim is to analyse the success of artificial neural network in pricing of options with S&P 100 index options data. Generally, the previous studies cover the data of European type call options. This study includes not only European call option but also American call and put options and European put options. Three data sets are used to perform three different ANN models. One only includes data that are directly observed from the economic environment, i.e. strike price, spot price, interest rate, maturity, type of the contract. The others include an extra input that is not an observable data but a parameter, i.e. volatility. With these detail data, the performance of ANN in put/call dimension, American/European dimension, moneyness dimension is analyzed and whether the contribution of the volatility in neural network analysis make improvement in prediction performance or not is examined. The most striking results revealed by the study is that ANN shows better performance when pricing call options compared to put options; and the use of volatility parameter as an input does not improve the performance.

Keywords: Neural Network, Option Pricing, S&P 100 Index, American/European options

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461