Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Overdispersed count data Related Publications

3 Zero Inflated Models for Overdispersed Count Data

Authors: Y. N. Phang, E. F. Loh

Abstract:

The zero inflated models are usually used in modeling count data with excess zeros where the existence of the excess zeros could be structural zeros or zeros which occur by chance. These type of data are commonly found in various disciplines such as finance, insurance, biomedical, econometrical, ecology, and health sciences which involve sex and health dental epidemiology. The most popular zero inflated models used by many researchers are zero inflated Poisson and zero inflated negative binomial models. In addition, zero inflated generalized Poisson and zero inflated double Poisson models are also discussed and found in some literature. Recently zero inflated inverse trinomial model and zero inflated strict arcsine models are advocated and proven to serve as alternative models in modeling overdispersed count data caused by excessive zeros and unobserved heterogeneity. The purpose of this paper is to review some related literature and provide a variety of examples from different disciplines in the application of zero inflated models. Different model selection methods used in model comparison are discussed.

Keywords: AIC, likelihood ratio, Overdispersed count data, model selection methods, BIC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3904
2 Zero Inflated Strict Arcsine Regression Model

Authors: Y. N. Phang, E. F. Loh

Abstract:

Zero inflated strict arcsine model is a newly developed model which is found to be appropriate in modeling overdispersed count data. In this study, we extend zero inflated strict arcsine model to zero inflated strict arcsine regression model by taking into consideration the extra variability caused by extra zeros and covariates in count data. Maximum likelihood estimation method is used in estimating the parameters for this zero inflated strict arcsine regression model.

Keywords: simulated annealing, Overdispersed count data, maximum likelihood estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
1 Bootstrap Confidence Intervals and Parameter Estimation for Zero Inflated Strict Arcsine Model

Authors: Y. N. Phang, E. F. Loh

Abstract:

Zero inflated Strict Arcsine model is a newly developed model which is found to be appropriate in modeling overdispersed count data. In this study, maximum likelihood estimation method is used in estimating the parameters for zero inflated strict arcsine model. Bootstrapping is then employed to compute the confidence intervals for the estimated parameters.

Keywords: simulated annealing, maximum likelihood estimation, Overdispersed count data, BCa confidence intervals

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950