Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8

order reduction Related Publications

8 Multivariable System Reduction Using Stability Equation Method and SRAM

Authors: D. Bala Bhaskar

Abstract:

An algorithm is proposed for the order reduction of large scale linear dynamic multi variable systems where the reduced order model denominator is obtained by using Stability equation method and numerator coefficients are obtained by using SRAM. The proposed algorithm produces a lower order model for an original stable high order multivariable system. The reduction procedure is easy to understand, efficient and computer oriented. To highlight the advantages of the approach, the algorithm is illustrated with the help of a numerical example and the results are compared with the other existing techniques in literature.

Keywords: SRAM, order reduction, Stability equation method, ISE, Multi variable systems, time domain characteristics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 380
7 System Reduction Using Modified Pole Clustering and Modified Cauer Continued Fraction

Authors: Jay Singh, C. B. Vishwakarma, Kalyan Chatterjee

Abstract:

A mixed method by combining modified pole clustering technique and modified cauer continued fraction is proposed for reducing the order of the large-scale dynamic systems. The denominator polynomial of the reduced order model is obtained by using modified pole clustering technique while the coefficients of the numerator are obtained by modified cauer continued fraction. This method generated 'k' number of reduced order models for kth order reduction. The superiority of the proposed method has been elaborated through numerical example taken from the literature and compared with few existing order reduction methods.

Keywords: Stability, transfer function, Modified pole clustering, order reduction, Modified Cauer Continued Fraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
6 System Reduction by Eigen Permutation Algorithm and Improved Pade Approximations

Authors: Jay Singh, Kalyan Chatterjee, C. B. Vishwakarma

Abstract:

A mixed method by combining a Eigen algorithm and improved pade approximations is proposed for reducing the order of the large-scale dynamic systems. The most dominant Eigen value of both original and reduced order systems remain same in this method. The proposed method guarantees stability of the reduced model if the original high-order system is stable and is comparable in quality with the other well known existing order reduction methods. The superiority of the proposed method is shown through examples taken from the literature.

Keywords: Stability, transfer function, order reduction, Eigen algorithm, improved pade approximations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
5 Order Reduction using Modified Pole Clustering and Pade Approximations

Authors: C.B. Vishwakarma

Abstract:

The authors present a mixed method for reducing the order of the large-scale dynamic systems. In this method, the denominator polynomial of the reduced order model is obtained by using the modified pole clustering technique while the coefficients of the numerator are obtained by Pade approximations. This method is conceptually simple and always generates stable reduced models if the original high-order system is stable. The proposed method is illustrated with the help of the numerical examples taken from the literature.

Keywords: Stability, transfer function, Modified pole clustering, order reduction, padeapproximation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2602
4 Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems

Authors: S. Panda, J. S. Yadav, N. P. Patidar, C. Ardil

Abstract:

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. The GA has been popular in academia and the industry mainly because of its intuitiveness, ease of implementation, and the ability to effectively solve highly non-linear, mixed integer optimization problems that are typical of complex engineering systems. PSO technique is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. In this paper both PSO and GA optimization are employed for finding stable reduced order models of single-input- single-output large-scale linear systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example from literature and the results are compared with recently published conventional model reduction technique.

Keywords: Stability, Genetic Algorithm, Particle Swarm Optimization, transfer function, Integral Squared Error, order reduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418
3 Design of Digital IIR filters with the Advantages of Model Order Reduction Technique

Authors: K.Ramesh, A.Nirmalkumar, G.Gurusamy

Abstract:

In this paper, a new model order reduction phenomenon is introduced at the design stage of linear phase digital IIR filter. The complexity of a system can be reduced by adopting the model order reduction method in their design. In this paper a mixed method of model order reduction is proposed for linear IIR filter. The proposed method employs the advantages of factor division technique to derive the reduced order denominator polynomial and the reduced order numerator is obtained based on the resultant denominator polynomial. The order reduction technique is used to reduce the delay units at the design stage of IIR filter. The validity of the proposed method is illustrated with design example in frequency domain and stability is also examined with help of nyquist plot.

Keywords: IIR Filter, order reduction, Error index (J), Factor division method, Nyquist plot

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
2 Relative Mapping Errors of Linear Time Invariant Systems Caused By Particle Swarm Optimized Reduced Order Model

Authors: G. Parmar, S. Mukherjee, R. Prasad

Abstract:

The authors present an optimization algorithm for order reduction and its application for the determination of the relative mapping errors of linear time invariant dynamic systems by the simplified models. These relative mapping errors are expressed by means of the relative integral square error criterion, which are determined for both unit step and impulse inputs. The reduction algorithm is based on minimization of the integral square error by particle swarm optimization technique pertaining to a unit step input. The algorithm is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing methods.

Keywords: Stability, Particle Swarm Optimization, order reduction, Relative mapping error

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
1 Order Reduction by Least-Squares Methods about General Point ''a''

Authors: Integral square error, Least-squares, Markovparameters, Moment matching, Order reduction.

Abstract:

The concept of order reduction by least-squares moment matching and generalised least-squares methods has been extended about a general point ?a?, to obtain the reduced order models for linear, time-invariant dynamic systems. Some heuristic criteria have been employed for selecting the linear shift point ?a?, based upon the means (arithmetic, harmonic and geometric) of real parts of the poles of high order system. It is shown that the resultant model depends critically on the choice of linear shift point ?a?. The validity of the criteria is illustrated by solving a numerical example and the results are compared with the other existing techniques.

Keywords: order reduction, Integral square error, Least-squares, Markovparameters, Moment matching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410