Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

MRI Related Publications

5 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images

Authors: Amr Abdel-Dayem, Sofia Matoug

Abstract:

This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.

Keywords: Alzheimer, MRI, classification techniques, brain images, Magnetic Resonance Images

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
4 Measurements of MRI R2* Relaxation Rate in Liver and Muscle: Animal Model

Authors: Jo-Chi Jao, Po-Chou Chen, Chiung-Yun Chang, Jiun-Shiang Tzeng, Ka-Wai Mac, Chia-Chi Hsiao

Abstract:

This study was aimed to measure effective transverse relaxation rates (R2*) in the liver and muscle of normal New Zealand White (NZW) rabbits. R2* relaxation rate has been widely used in various hepatic diseases for iron overload by quantifying iron contents in liver. R2* relaxation rate is defined as the reciprocal of T2* relaxation time and mainly depends on the constituents of tissue. Different tissues would have different R2* relaxation rates. The signal intensity decay in Magnetic resonance imaging (MRI) may be characterized by R2* relaxation rates. In this study, a 1.5T GE Signa HDxt whole body MR scanner equipped with an 8-channel high resolution knee coil was used to observe R2* values in NZW rabbit’s liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture, the abdomen of rabbit was landmarked at the center of knee coil to perform 3-plane localizer scan using fast spoiled gradient echo (FSPGR) pulse sequence. Afterwards, multi-planar fast gradient echo (MFGR) scans were performed with 8 various echo times (TEs) to acquire images for R2* measurements. Regions of interest (ROIs) at liver and muscle were measured using Advantage workstation. Finally, the R2* was obtained by a linear regression of ln(sı) on TE. The results showed that the longer the echo time, the smaller the signal intensity. The R2* values of liver and muscle were 44.8 ± 10.9 s-1 and 37.4 ± 9.5 s-1, respectively. It implies that the iron concentration of liver is higher than that of muscle. In conclusion, the more the iron contents in tissue, the higher the R2*. The correlations between R2* and iron content in NZW rabbits might be valuable for further exploration.

Keywords: MRI, Liver, Muscle, R2* relaxation rate, multi-planar fast gradient echo

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
3 Use of Magnetic Nanoparticles in Cancer Detection with MRI

Authors: A. Taqaddas

Abstract:

Magnetic Nanoparticles (MNPs) have great potential to overcome many of the shortcomings of the present diagnostic and therapeutic approaches used in cancer diagnosis and treatment. This Literature review discusses the use of Magnetic Nanoparticles focusing mainly on Iron oxide based MNPs in cancer imaging using MRI.

Keywords: Cancer, Imaging, MRI, magnetic nanoparticles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2730
2 Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation

Authors: Terrence Chen, Thomas S. Huang

Abstract:

In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L1 model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current state-of-the-art method, the hidden Markov random field model (HMRF), which uses identical spatial information throughout the whole brain. Experiments on both real and synthetic 3D MR images show that the segmentation result of the proposed method has higher accuracy compared to existing algorithms.

Keywords: MRI, Image Segmentation, Finite Gaussian mixture model, Hidden Markov random field model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
1 Comparison of Fricative Vocal Tract Transfer Functions Derived using Two Different Segmentation Techniques

Authors: K. S. Subari, C. H. Shadle, A. Barney, R. I. Damper

Abstract:

The acoustic and articulatory properties of fricative speech sounds are being studied using magnetic resonance imaging (MRI) and acoustic recordings from a single subject. Area functions were derived from a complete set of axial and coronal MR slices using two different methods: the Mermelstein technique and the Blum transform. Area functions derived from the two techniques were shown to differ significantly in some cases. Such differences will lead to different acoustic predictions and it is important to know which is the more accurate. The vocal tract acoustic transfer function (VTTF) was derived from these area functions for each fricative and compared with measured speech signals for the same fricative and same subject. The VTTFs for /f/ in two vowel contexts and the corresponding acoustic spectra are derived here; the Blum transform appears to show a better match between prediction and measurement than the Mermelstein technique.

Keywords: Speech, MRI, Area functions, fricatives, vocal tract transferfunction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323