Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8

modulus of elasticity Related Publications

8 Effect of Rubber Treatment on Compressive Strength and Modulus of Elasticity of Self-Compacting Rubberized Concrete

Authors: I. Miličević, M. Hadzima Nyarko, R. Bušić, J. Simonović Radosavljević, M. Prokopijević, K. Vojisavljević

Abstract:

This paper investigates the effects of different treatment methods of rubber aggregates for self-compacting concrete (SCC) on compressive strength and modulus of elasticity. SCC mixtures with 10% replacement of fine aggregate with crumb rubber by total aggregate volume and with different aggregate treatment methods were investigated. The rubber aggregate was treated in three different methods: dry process, water-soaking, and NaOH treatment plus water soaking. Properties of SCC in a fresh and hardened state were tested and evaluated. Scanning electron microscope (SEM) analysis of three different SCC patches were made and discussed. It was observed that applying the proposed NaOH plus water soaking method resulted in the improvement of fresh and hardened concrete properties. It resulted in a more uniform distribution of rubber particles in the cement matrix, a better bond between rubber particles and the cement matrix, and higher compressive strength of SCC rubberized concrete.

Keywords: compressive strength, modulus of elasticity, NaOH treatment, rubber aggregate, self-compacting rubberized concrete, scanning electron microscope analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79
7 Mechanical and Microstructural Properties of Rotary-Swaged Wire of Commercial-Purity Titanium

Authors: Michal Duchek, Jan Palán, Tomas Kubina

Abstract:

Bars made of titanium grade 2 and grade 4 were subjected to rotary forging with up to 2.2 true strain reduction in the cross-section from 10 to 3.81 mm. During progressive deformation, grain refinement in the transverse direction took place. In the longitudinal direction, ultrafine microstructure has not developed. It has been demonstrated that titanium grade 2 strengthens more than grade 4. The ultimate tensile strength increased from 650 MPa to 1040 MPa in titanium grade 4. Hardness profiles on the cross section in both materials show an increase in the centre of the wire.

Keywords: Microstructure, Hardness, modulus of elasticity, tensile test, wire, commercial-purity titanium, rotary swaging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 303
6 Durability Aspects of Recycled Aggregate Concrete: An Experimental Study

Authors: Smitha Yadav, Snehal Pathak

Abstract:

Aggregate compositions in the construction and demolition (C&D) waste have potential to replace normal aggregates. However, to re-utilise these aggregates, the concrete produced with these recycled aggregates needs to provide the desired compressive strength and durability. This paper examines the performance of recycled aggregate concrete made up of 60% recycled aggregates of 20 mm size in terms of durability tests namely rapid chloride permeability, drying shrinkage, water permeability, modulus of elasticity and creep without compromising the compressive strength. The experimental outcome indicates that recycled aggregate concrete provides strength and durability same as controlled concrete when processed for removal of adhered mortar.

Keywords: compressive strength, shrinkage, modulus of elasticity, water permeability, recycled aggregate, rapid chloride permeation test

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
5 Selected Technological Factors Influencing the Modulus of Elasticity of Concrete

Authors: Klara Krizova, Rudolf Hela

Abstract:

The topic of the article focuses on the evaluation of selected technological factors and their influence on resulting elasticity modulus of concrete. A series of various factors enter into the manufacturing process which, more or less, influences the elasticity modulus. This paper presents the results of concrete in which the influence of water coefficient and the size of maximum fraction of the aggregate on the static elasticity modulus were monitored. Part of selected results of the long-term programme was discussed in which a wide scope of various variants of proposals for the composition of concretes was evaluated.

Keywords: modulus of elasticity, mix design, water-cement ratio, aggregate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
4 Improvement of Performance for R.C. Beams Made from Recycled Aggregate by Using Non-Traditional Admixture

Authors: A. H. Yehia, M. M. Rashwan, K. A. Assaf, K. Abd el Samee

Abstract:

The aim of this work is to use an environmental, cheap; organic non-traditional admixture to improve the structural behavior of sustainable reinforced concrete beams contains different ratios of recycled concrete aggregate. The used admixture prepared by using wastes from vegetable oil industry. Under and over reinforced concrete beams made from natural aggregate and different ratios of recycled concrete aggregate were tested under static load until failure. Eight beams were tested to investigate the performance and mechanism effect of admixture on improving deformation characteristics, modulus of elasticity and toughness of tested beams. Test results show efficiency of organic admixture on improving flexural behavior of beams contains 20% recycled concrete aggregate more over the other ratios.

Keywords: Toughness, strain, deflection, modulus of elasticity, recycled concrete aggregate, non-traditional admixture, under and over reinforcement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
3 Oil Palm Shell Ash - Cement Mortar Mixture and Modification of Mechanical Properties

Authors: Abdoullah Namdar, Fadzil Mat Yahaya

Abstract:

The waste agriculture materials cause environment pollution, recycle of these materials help sustainable development. This study focused on the impact of used oil palm shell ash on the compressive and flexural strengths of cement mortar. Two different cement mortar mixes have been designed to investigate the impact of oil palm shell ash on strengths of cement mortar. Quantity of 4% oil palm shell ash has been replaced in cement mortar. The main objective of this paper is, to modify mechanical properties of cement mortar by replacement of oil palm ash in it at early age of 7 days. The results have been revealed optimum quantity of oil palm ash for replacement in cement mortar. The deflection, load to failure, time to failure of compressive strength and flexural strength of all specimens have significantly been improved. The stress-strain behavior has been indicated ability of modified cement mortar in control stress path and strain. The micro property of cement paste has not been investigated.

Keywords: Minerals, compressive strength, flexural strength, additive, modulus of elasticity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
2 Effect of Water- Cement Ratio (w/c) on Mechanical Properties of Self-Compacting Concrete (Case Study)

Authors: Hamed Ahmadi Moghadam, Omolbanin Arasteh Khoshbin

Abstract:

Nowadays, the performance required for concrete structures is more complicated and diversified. Self-compacting concrete is a fluid mixture suitable for placing in structures with congested reinforcement without vibration. Self-compacting concrete development must ensure a good balance between deformability and stability. Also, compatibility is affected by the characteristics of materials and the mix proportions; it becomes necessary to evolve a procedure for mix design of SCC. This paper presents an experimental procedure for the design of self-compacting concrete mixes with different water-cement ratios (w/c) and other constant ratios by local materials. The test results for acceptance characteristics of self-compacting concrete such as slump flow, V-funnel and L-Box are presented. Further, compressive strength, tensile strength and modulus of elasticity of specimens were also determined and results are included here

Keywords: Self-Compacting Concrete, Tensile Strength, compressive strength, modulus of elasticity, mix design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5124
1 Comparison of Eurocodes EN310 and EN789 in Determining the Bending Strength and Modulus of Elasticity of Red Seraya Plywood Panel

Authors: S.F. Tsen, M. Zamin Jumaat

Abstract:

The characteristic bending strength (MOR) and mean modulus of elasticity (MOE) of tropical hardwood red seraya (Shorea spp.) plywood were determined using European Standard EN310 and EN789. The thickness of the test specimen was 4.0mm, 7.0mm, 9.0mm, 12.0mm and 15.0mm. The experiment found that the MOR of red seraya plywood in EN310 is about 12% to 20% and 7% to 24% higher than EN789 whereas MOE were about 28% to 41% and 30% to 36% lower than those obtained from EN 789 for test specimens parallel and perpendicular to the grain direction. The linear regression shows that MOR and MOE for EN789 is about 0.8 times less and 1.5 times more than EN310. The experiment also found that the MOR and MOE of EN310 and EN789 also depend on the wood species that used in the experiment.

Keywords: modulus of elasticity, bending strength, EN310, EN789

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3927