Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11

material removal rate Related Publications

11 Mathematical Expression for Machining Performance

Authors: Md. Ashikur Rahman Khan, M. M. Rahman

Abstract:

In electrical discharge machining (EDM), a complete and clear theory has not yet been established. The developed theory (physical models) yields results far from reality due to the complexity of the physics. It is difficult to select proper parameter settings in order to achieve better EDM performance. However, modelling can solve this critical problem concerning the parameter settings. Therefore, the purpose of the present work is to develop mathematical model to predict performance characteristics of EDM on Ti-5Al-2.5Sn titanium alloy. Response surface method (RSM) and artificial neural network (ANN) are employed to develop the mathematical models. The developed models are verified through analysis of variance (ANOVA). The ANN models are trained, tested, and validated utilizing a set of data. It is found that the developed ANN and mathematical model can predict performance of EDM effectively. Thus, the model has found a precise tool that turns EDM process cost-effective and more efficient.

Keywords: Modelling, Artificial Neural Network, Surface Finish, analysis of variance, material removal rate, response surface method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 335
10 Experimental Analysis and Optimization of Process Parameters in Plasma Arc Cutting Machine of EN-45A Material Using Taguchi and ANOVA Method

Authors: Raj Kumar, Sahil Sharma, Mukesh Gupta, N. S Bindra

Abstract:

This paper presents an experimental investigation on the optimization and the effect of the cutting parameters on Material Removal Rate (MRR) in Plasma Arc Cutting (PAC) of EN-45A Material using Taguchi L 16 orthogonal array method. Four process variables viz. cutting speed, current, stand-off-distance and plasma gas pressure have been considered for this experimental work. Analysis of variance (ANOVA) has been performed to get the percentage contribution of each process parameter for the response variable i.e. MRR. Based on ANOVA, it has been observed that the cutting speed, current and the plasma gas pressure are the major influencing factors that affect the response variable. Confirmation test based on optimal setting shows the better agreement with the predicted values.

Keywords: Taguchi method, analysis of variance, material removal rate, plasma arc cutting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
9 Optimization of Machining Parametric Study on Electrical Discharge Machining

Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel

Abstract:

Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.

Keywords: ANOVA, DOE, material removal rate, TWR, minitab

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 481
8 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718

Authors: S. Maheshwari, Pushpendra S. Bharti

Abstract:

Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.

Keywords: Optimization, surface roughness, EDM, material removal rate, multi-response signal-to-noise ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
7 Multi-Objective Optimization in End Milling of Al-6061 Using Taguchi Based G-PCA

Authors: Arvind Singh, M. K. Pradhan, Mayank Meena, Shubham Sen

Abstract:

In this study, a multi objective optimization for end milling of Al 6061 alloy has been presented to provide better surface quality and higher Material Removal Rate (MRR). The input parameters considered for the analysis are spindle speed, depth of cut and feed. The experiments were planned as per Taguchis design of experiment, with L27 orthogonal array. The Grey Relational Analysis (GRA) has been used for transforming multiple quality responses into a single response and the weights of the each performance characteristics are determined by employing the Principal Component Analysis (PCA), so that their relative importance can be properly and objectively described. The results reveal that Taguchi based G-PCA can effectively acquire the optimal combination of cutting parameters.

Keywords: Principal Component Analysis, surface roughness, material removal rate, grey relational analysis, Taguchi Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
6 Artificial Intelligent Approach for Machining Titanium Alloy in a Nonconventional Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama

Abstract:

Artificial neural networks (ANN) are used in distinct researching fields and professions, and are prepared by cooperation of scientists in different fields such as computer engineering, electronic, structure, biology and so many different branches of science. Many models are built correlating the parameters and the outputs in electrical discharge machining (EDM) concern for different types of materials. Up till now model for Ti-5Al-2.5Sn alloy in the case of electrical discharge machining performance characteristics has not been developed. Therefore, in the present work, it is attempted to generate a model of material removal rate (MRR) for Ti-5Al-2.5Sn material by means of Artificial Neural Network. The experimentation is performed according to the design of experiment (DOE) of response surface methodology (RSM). To generate the DOE four parameters such as peak current, pulse on time, pulse off time and servo voltage and one output as MRR are considered. Ti-5Al-2.5Sn alloy is machined with positive polarity of copper electrode. Finally the developed model is tested with confirmation test. The confirmation test yields an error as within the agreeable limit. To investigate the effect of the parameters on performance sensitivity analysis is also carried out which reveals that the peak current having more effect on EDM performance.

Keywords: Artificial Neural Network, multi-layer perceptron, material removal rate, positive polarity, copper tungsten, Ti-5Al-2.5Sn

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
5 ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context

Authors: Mangesh R. Phate, V. H. Tatwawadi

Abstract:

This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment.

The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.

Keywords: Simulation, Artificial Neural Network, material removal rate, Field data based model, Convectional Turning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
4 An Exhaustive Review of Die Sinking Electrical Discharge Machining Process and Scope for Future Research

Authors: M. M. Pawade, S. S. Banwait

Abstract:

Electrical Discharge Machine (EDM) is especially used for the manufacturing of 3-D complex geometry and hard material parts that are extremely difficult-to-machine by conventional machining processes. In this paper authors review the research work carried out in the development of die-sinking EDM within the past decades for the improvement of machining characteristics such as Material Removal Rate, Surface Roughness and Tool Wear Ratio. In this review various techniques reported by EDM researchers for improving the machining characteristics have been categorized as process parameters optimization, multi spark technique, powder mixed EDM, servo control system and pulse discriminating. At the end, flexible machine controller is suggested for Die Sinking EDM to enhance the machining characteristics and to achieve high-level automation. Thus, die sinking EDM can be integrated with Computer Integrated Manufacturing environment as a need of agile manufacturing systems.

Keywords: material removal rate, Electrical Discharge Machine, Flexible Machine Controller, Tool Wear Ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4840
3 Surface Roughness and MRR Effect on Manual Plasma Arc Cutting Machining

Authors: R. Bhuvenesh, M.H. Norizaman, M.S. Abdul Manan

Abstract:

Industrial surveys shows that manufacturing companies define the qualities of thermal removing process based on the dimension and physical appearance of the cutting material surface. Therefore, the roughness of the surface area of the material cut by the plasma arc cutting process and the rate of the removed material by the manual plasma arc cutting machine was importantly considered. Plasma arc cutter Selco Genesis 90 was used to cut Standard AISI 1017 Steel of 200 mm x100 mm x 6 mm manually based on the selected parameters setting. The material removal rate (MRR) was measured by determining the weight of the specimens before and after the cutting process. The surface roughness (SR) analysis was conducted using Mitutoyo CS-3100 to determine the average roughness value (Ra). Taguchi method was utilized to achieve optimum condition for both outputs studied. The microstructure analysis in the region of the cutting surface is performed using SEM. The results reveal that the SR values are inversely proportional to the MRR values. The quality of the surface roughness depends on the dross peak that occurred after the cutting process.

Keywords: Taguchi method, surface roughness, material removal rate, plasma arc cutting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5243
2 Modeling of Material Removal on Machining of Ti-6Al-4V through EDM using Copper Tungsten Electrode and Positive Polarity

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, Rosli A. Bakar, K. Kadirgama M. M. Noor

Abstract:

This paper deals optimized model to investigate the effects of peak current, pulse on time and pulse off time in EDM performance on material removal rate of titanium alloy utilizing copper tungsten as electrode and positive polarity of the electrode. The experiments are carried out on Ti6Al4V. Experiments were conducted by varying the peak current, pulse on time and pulse off time. A mathematical model is developed to correlate the influences of these variables and material removal rate of workpiece. Design of experiments (DOE) method and response surface methodology (RSM) techniques are implemented. The validity test of the fit and adequacy of the proposed models has been carried out through analysis of variance (ANOVA). The obtained results evidence that as the material removal rate increases as peak current and pulse on time increases. The effect of pulse off time on MRR changes with peak ampere. The optimum machining conditions in favor of material removal rate are verified and compared. The optimum machining conditions in favor of material removal rate are estimated and verified with proposed optimized results. It is observed that the developed model is within the limits of the agreeable error (about 4%) when compared to experimental results. This result leads to desirable material removal rate and economical industrial machining to optimize the input parameters.

Keywords: RSM, material removal rate, Ti-6Al-4V, positive polarity, copper tungsten

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
1 Neuro-fuzzy Model and Regression Model a Comparison Study of MRR in Electrical Discharge Machining of D2 Tool Steel

Authors: M. K. Pradhan, C. K. Biswas

Abstract:

In the current research, neuro-fuzzy model and regression model was developed to predict Material Removal Rate in Electrical Discharge Machining process for AISI D2 tool steel with copper electrode. Extensive experiments were conducted with various levels of discharge current, pulse duration and duty cycle. The experimental data are split into two sets, one for training and the other for validation of the model. The training data were used to develop the above models and the test data, which was not used earlier to develop these models were used for validation the models. Subsequently, the models are compared. It was found that the predicted and experimental results were in good agreement and the coefficients of correlation were found to be 0.999 and 0.974 for neuro fuzzy and regression model respectively

Keywords: regression model, material removal rate, electrical discharge machining, neuro-fuzzy model, mountain clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103