Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

Iterative methods Related Publications

6 Implementation of ADETRAN Language Using Message Passing Interface

Authors: Akiyoshi Wakatani

Abstract:

This paper describes the Message Passing Interface (MPI) implementation of ADETRAN language, and its evaluation on SX-ACE supercomputers. ADETRAN language includes pdo statement that specifies the data distribution and parallel computations and pass statement that specifies the redistribution of arrays. Two methods for implementation of pass statement are discussed and the performance evaluation using Splitting-Up CG method is presented. The effectiveness of the parallelization is evaluated and the advantage of one dimensional distribution is empirically confirmed by using the results of experiments.

Keywords: Iterative methods, array redistribution, translator, distributed memory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
5 Automatic Iterative Methods for the Multivariate Solution of Nonlinear Algebraic Equations

Authors: Rafat Alshorman, Safwan Al-Shara', I. Obeidat

Abstract:

Most real world systems express themselves formally as a set of nonlinear algebraic equations. As applications grow, the size and complexity of these equations also increase. In this work, we highlight the key concepts in using the homotopy analysis method as a methodology used to construct efficient iteration formulas for nonlinear equations solving. The proposed method is experimentally characterized according to a set of determined parameters which affect the systems. The experimental results show the potential and limitations of the new method and imply directions for future work.

Keywords: Iterative methods, Nonlinear Algebraic Equations, Homotopy Analysis Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
4 Iterative Methods for An Inverse Problem

Authors: Minghui Wang, Shanrui Hu

Abstract:

An inverse problem of doubly center matrices is discussed. By translating the constrained problem into unconstrained problem, two iterative methods are proposed. A numerical example illustrate our algorithms.

Keywords: Iterative methods, doubly center matrix, electric network theory, least-square problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165
3 Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F

Authors: Fatemeh Panjeh Ali Beik

Abstract:

In the present work, we propose a new method for solving the matrix equation AXB=F . The new method can be considered as a generalized form of the well-known global full orthogonalization method (Gl-FOM) for solving multiple linear systems. Hence, the method will be called extended Gl-FOM (EGl- FOM). For implementing EGl-FOM, generalized forms of block Krylov subspace and global Arnoldi process are presented. Finally, some numerical experiments are given to illustrate the efficiency of our new method.

Keywords: Iterative methods, Matrix equations, Block Krylovsubspace methods

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
2 A New Derivative-Free Quasi-Secant Algorithm For Solving Non-Linear Equations

Authors: F. Soleymani, M. Sharifi

Abstract:

Most of the nonlinear equation solvers do not converge always or they use the derivatives of the function to approximate the root of such equations. Here, we give a derivative-free algorithm that guarantees the convergence. The proposed two-step method, which is to some extent like the secant method, is accompanied with some numerical examples. The illustrative instances manifest that the rate of convergence in proposed algorithm is more than the quadratically iterative schemes.

Keywords: Convergence, Iterative methods, Non-linear equation, derivative-free

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
1 Numerical Study of Iterative Methods for the Solution of the Dirichlet-Neumann Map for Linear Elliptic PDEs on Regular Polygon Domains

Authors: A. G. Sifalakis, E. P. Papadopoulou, Y. G. Saridakis

Abstract:

A generalized Dirichlet to Neumann map is one of the main aspects characterizing a recently introduced method for analyzing linear elliptic PDEs, through which it became possible to couple known and unknown components of the solution on the boundary of the domain without solving on its interior. For its numerical solution, a well conditioned quadratically convergent sine-Collocation method was developed, which yielded a linear system of equations with the diagonal blocks of its associated coefficient matrix being point diagonal. This structural property, among others, initiated interest for the employment of iterative methods for its solution. In this work we present a conclusive numerical study for the behavior of classical (Jacobi and Gauss-Seidel) and Krylov subspace (GMRES and Bi-CGSTAB) iterative methods when they are applied for the solution of the Dirichlet to Neumann map associated with the Laplace-s equation on regular polygons with the same boundary conditions on all edges.

Keywords: Iterative methods, collocation, GMRES, elliptic PDEs, Gauss-Seidel, Jacobi, Dirichlet to Neumann Map, Global Relation, Bi-CGSTAB

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417