Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9

Indexing Related Publications

9 Content-Based Color Image Retrieval Based On 2-D Histogram and Statistical Moments

Authors: Khalid Elasnaoui, Brahim Aksasse, Mohammed Ouanan

Abstract:

In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.

Keywords: Indexing, statistical moments, similarity distance, histograms intersection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
8 Semantic Indexing Approach of a Corpora Based On Ontology

Authors: Mohammed Erritali

Abstract:

The growth in the volume of text data such as books and articles in libraries for centuries has imposed to establish effective mechanisms to locate them. Early techniques such as abstraction, indexing and the use of classification categories have marked the birth of a new field of research called "Information Retrieval". Information Retrieval (IR) can be defined as the task of defining models and systems whose purpose is to facilitate access to a set of documents in electronic form (corpus) to allow a user to find the relevant ones for him, that is to say, the contents which matches with the information needs of the user. This paper presents a new semantic indexing approach of a documentary corpus. The indexing process starts first by a term weighting phase to determine the importance of these terms in the documents. Then the use of a thesaurus like Wordnet allows moving to the conceptual level. Each candidate concept is evaluated by determining its level of representation of the document, that is to say, the importance of the concept in relation to other concepts of the document. Finally, the semantic index is constructed by attaching to each concept of the ontology, the documents of the corpus in which these concepts are found.

Keywords: Semantic, Ontology, Indexing, corpora, WordNet

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
7 Image Indexing Using a Color Similarity Metric based on the Human Visual System

Authors: Angelo Nodari, Ignazio Gallo

Abstract:

The novelty proposed in this study is twofold and consists in the developing of a new color similarity metric based on the human visual system and a new color indexing based on a textual approach. The new color similarity metric proposed is based on the color perception of the human visual system. Consequently the results returned by the indexing system can fulfill as much as possibile the user expectations. We developed a web application to collect the users judgments about the similarities between colors, whose results are used to estimate the metric proposed in this study. In order to index the image's colors, we used a text indexing engine to facilitate the integration of visual features in a database of text documents. The textual signature is build by weighting the image's colors in according to their occurrence in the image. The use of a textual indexing engine, provide us a simple, fast and robust solution to index images. A typical usage of the system proposed in this study, is the development of applications whose data type is both visual and textual. In order to evaluate the proposed method we chose a price comparison engine as a case of study, collecting a series of commercial offers containing the textual description and the image representing a specific commercial offer.

Keywords: Indexing, content-based image retrieval, Color Extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2665
6 Choosing R-tree or Quadtree Spatial DataIndexing in One Oracle Spatial Database System to Make Faster Showing Geographical Map in Mobile Geographical Information System Technology

Authors: Maruto Masserie Sardadi, Mohd Shafry bin Mohd Rahim, Zahabidin Jupri, Daut bin Daman

Abstract:

The latest Geographic Information System (GIS) technology makes it possible to administer the spatial components of daily “business object," in the corporate database, and apply suitable geographic analysis efficiently in a desktop-focused application. We can use wireless internet technology for transfer process in spatial data from server to client or vice versa. However, the problem in wireless Internet is system bottlenecks that can make the process of transferring data not efficient. The reason is large amount of spatial data. Optimization in the process of transferring and retrieving data, however, is an essential issue that must be considered. Appropriate decision to choose between R-tree and Quadtree spatial data indexing method can optimize the process. With the rapid proliferation of these databases in the past decade, extensive research has been conducted on the design of efficient data structures to enable fast spatial searching. Commercial database vendors like Oracle have also started implementing these spatial indexing to cater to the large and diverse GIS. This paper focuses on the decisions to choose R-tree and quadtree spatial indexing using Oracle spatial database in mobile GIS application. From our research condition, the result of using Quadtree and R-tree spatial data indexing method in one single spatial database can save the time until 42.5%.

Keywords: Indexing, Mobile GIS, MapViewer, Oracle SpatialDatabase

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3621
5 Query Optimization Techniques for XML Databases

Authors: Su Cheng Haw, G. S. V. Radha Krishna Rao

Abstract:

Over the past few years, XML (eXtensible Mark-up Language) has emerged as the standard for information representation and data exchange over the Internet. This paper provides a kick-start for new researches venturing in XML databases field. We survey the storage representation for XML document, review the XML query processing and optimization techniques with respect to the particular storage instance. Various optimization technologies have been developed to solve the query retrieval and updating problems. Towards the later year, most researchers proposed hybrid optimization techniques. Hybrid system opens the possibility of covering each technology-s weakness by its strengths. This paper reviews the advantages and limitations of optimization techniques.

Keywords: Indexing, query optimization, labeling scheme, XML storage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
4 EEIA: Energy Efficient Indexed Aggregation in Smart Wireless Sensor Networks

Authors: Mohamed Watfa, William Daher, Hisham Al Azar

Abstract:

The main idea behind in network aggregation is that, rather than sending individual data items from sensors to sinks, multiple data items are aggregated as they are forwarded by the sensor network. Existing sensor network data aggregation techniques assume that the nodes are preprogrammed and send data to a central sink for offline querying and analysis. This approach faces two major drawbacks. First, the system behavior is preprogrammed and cannot be modified on the fly. Second, the increased energy wastage due to the communication overhead will result in decreasing the overall system lifetime. Thus, energy conservation is of prime consideration in sensor network protocols in order to maximize the network-s operational lifetime. In this paper, we give an energy efficient approach to query processing by implementing new optimization techniques applied to in-network aggregation. We first discuss earlier approaches in sensors data management and highlight their disadvantages. We then present our approach “Energy Efficient Indexed Aggregation" (EEIA) and evaluate it through several simulations to prove its efficiency, competence and effectiveness.

Keywords: Sensor Networks, Energy Efficiency, Indexing, aggregation, Data fusion, data base

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
3 Indexing and Searching of Image Data in Multimedia Databases Using Axial Projection

Authors: Khalid A. Kaabneh

Abstract:

This paper introduces and studies new indexing techniques for content-based queries in images databases. Indexing is the key to providing sophisticated, accurate and fast searches for queries in image data. This research describes a new indexing approach, which depends on linear modeling of signals, using bases for modeling. A basis is a set of chosen images, and modeling an image is a least-squares approximation of the image as a linear combination of the basis images. The coefficients of the basis images are taken together to serve as index for that image. The paper describes the implementation of the indexing scheme, and presents the findings of our extensive evaluation that was conducted to optimize (1) the choice of the basis matrix (B), and (2) the size of the index A (N). Furthermore, we compare the performance of our indexing scheme with other schemes. Our results show that our scheme has significantly higher performance.

Keywords: Images, Indexing, Searching, Axial Projection, multimedia database

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047
2 Grouping and Indexing Color Features for Efficient Image Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

Content-based Image Retrieval (CBIR) aims at searching image databases for specific images that are similar to a given query image based on matching of features derived from the image content. This paper focuses on a low-dimensional color based indexing technique for achieving efficient and effective retrieval performance. In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique. Then the cluster (region) mode is used as representative of the image in 3-D color space. The feature descriptor consists of the representative color of a region and is indexed using a spatial indexing method that uses *R -tree thus avoiding the high-dimensional indexing problems associated with the traditional color histogram. Alternatively, the images in the database are clustered based on region feature similarity using Euclidian distance. Only representative (centroids) features of these clusters are indexed using *R -tree thus improving the efficiency. For similarity retrieval, each representative color in the query image or region is used independently to find regions containing that color. The results of these methods are compared. A JAVA based query engine supporting query-by- example is built to retrieve images by color.

Keywords: Cluster, Indexing, content-based, region

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
1 Concept Indexing using Ontology and Supervised Machine Learning

Authors: Rossitza M. Setchi, Qiao Tang

Abstract:

Nowadays, ontologies are the only widely accepted paradigm for the management of sharable and reusable knowledge in a way that allows its automatic interpretation. They are collaboratively created across the Web and used to index, search and annotate documents. The vast majority of the ontology based approaches, however, focus on indexing texts at document level. Recently, with the advances in ontological engineering, it became clear that information indexing can largely benefit from the use of general purpose ontologies which aid the indexing of documents at word level. This paper presents a concept indexing algorithm, which adds ontology information to words and phrases and allows full text to be searched, browsed and analyzed at different levels of abstraction. This algorithm uses a general purpose ontology, OntoRo, and an ontologically tagged corpus, OntoCorp, both developed for the purpose of this research. OntoRo and OntoCorp are used in a two-stage supervised machine learning process aimed at generating ontology tagging rules. The first experimental tests show a tagging accuracy of 78.91% which is encouraging in terms of the further improvement of the algorithm.

Keywords: Machine Learning, Ontology, Indexing, tagging, Concepts

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332